1887

Abstract

Although they lack a cell wall, mycoplasmas do possess a glycocalyx. The interactions between the glycocalyx, mycoplasmal surface proteins and host complement were explored using the murine pathogen as a model. It was previously shown that the length of the tandem repeat region of the surface lipoprotein Vsa is associated with susceptibility to complement-mediated killing. Cells producing a long Vsa containing about 40 repeats are resistant to complement, whereas strains that produce a short Vsa of five or fewer repeats are susceptible. We show here that the length of the Vsa protein modulates the affinity of the EPS-I polysaccharide for the mycoplasma cell surface, with more EPS-I being associated with mycoplasmas producing a short Vsa protein. An examination of mutants that lack EPS-I revealed that planktonic mycoplasmas were highly susceptible to complement killing even when the Vsa protein was long, demonstrating that both EPS-I and Vsa length contribute to resistance. In contrast, the mycoplasmas were resistant to complement even in the absence of EPS-I when the cells were encased in a biofilm.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.058222-0
2012-07-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/7/1867.html?itemId=/content/journal/micro/10.1099/mic.0.058222-0&mimeType=html&fmt=ahah

References

  1. Alitalo A., Meri T., Rämö L., Jokiranta T. S., Heikkilä T., Seppälä I. J. T., Oksi J., Viljanen M., Meri S.. ( 2001;). Complement evasion by Borrelia burgdorferi: serum-resistant strains promote C3b inactivation. . Infect Immun 69:, 3685–3691. [CrossRef][PubMed]
    [Google Scholar]
  2. Bhugra B., Voelker L. L., Zou N., Yu H., Dybvig K.. ( 1995;). Mechanism of antigenic variation in Mycoplasma pulmonis: interwoven, site-specific DNA inversions. . Mol Microbiol 18:, 703–714. [CrossRef][PubMed]
    [Google Scholar]
  3. Comstock L. E., Kasper D. L.. ( 2006;). Bacterial glycans: key mediators of diverse host immune responses. . Cell 126:, 847–850. [CrossRef][PubMed]
    [Google Scholar]
  4. Daubenspeck J. M., Bolland J. R., Luo W., Simmons W. L., Dybvig K.. ( 2009;). Identification of exopolysaccharide-deficient mutants of Mycoplasma pulmonis. . Mol Microbiol 72:, 1235–1245. [CrossRef][PubMed]
    [Google Scholar]
  5. Denison A. M., Clapper B., Dybvig K.. ( 2005;). Avoidance of the host immune system through phase variation in Mycoplasma pulmonis. . Infect Immun 73:, 2033–2039. [CrossRef][PubMed]
    [Google Scholar]
  6. Dybvig K., Gasparich G. E., King K. W.. ( 1995;). Artificial transformation of mollicutes via polyethylene glycol- and electroporation-mediated methods. . In Molecular and Diagnostic Procedures in Mycoplasmology, pp. 179–184. Edited by Razin S., Tully J. G... Orlando, FL:: Academic Press;. [CrossRef]
    [Google Scholar]
  7. Dybvig K., French C. T., Voelker L. L.. ( 2000;). Construction and use of derivatives of transposon Tn4001 that function in Mycoplasma pulmonis and Mycoplasma arthritidis. . J Bacteriol 182:, 4343–4347. [CrossRef][PubMed]
    [Google Scholar]
  8. French C. T., Lao P., Loraine A. E., Matthews B. T., Yu H., Dybvig K.. ( 2008;). Large-scale transposon mutagenesis of Mycoplasma pulmonis. . Mol Microbiol 69:, 67–76. [CrossRef][PubMed]
    [Google Scholar]
  9. Gumulak-Smith J., Teachman A., Tu A.-H. T., Simecka J. W., Lindsey J. R., Dybvig K.. ( 2001;). Variations in the surface proteins and restriction enzyme systems of Mycoplasma pulmonis in the respiratory tract of infected rats. . Mol Microbiol 40:, 1037–1044. [CrossRef][PubMed]
    [Google Scholar]
  10. Keo T., Collins J., Kunwar P., Blaser M. J., Iovine N. M.. ( 2011;). Campylobacter capsule and lipooligosaccharide confer resistance to serum and cationic antimicrobials. . Virulence 2:, 30–40. [CrossRef][PubMed]
    [Google Scholar]
  11. Lindsey J. R., Baker H. J., Overcash R. G., Cassell G. H., Hunt C. E.. ( 1971;). Murine chronic respiratory disease. Significance as a research complication and experimental production with Mycoplasma pulmonis. . Am J Pathol 64:, 675–708.[PubMed]
    [Google Scholar]
  12. O’Riordan K., Lee J. C.. ( 2004;). Staphylococcus aureus capsular polysaccharides. . Clin Microbiol Rev 17:, 218–234. [CrossRef][PubMed]
    [Google Scholar]
  13. Razin S.. ( 1999;). Adherence of pathogenic mycoplasmas to host cells. . Biosci Rep 19:, 367–372. [CrossRef][PubMed]
    [Google Scholar]
  14. Razin S., Yogev D., Naot Y.. ( 1998;). Molecular biology and pathogenicity of mycoplasmas. . Microbiol Mol Biol Rev 62:, 1094–1156.[PubMed]
    [Google Scholar]
  15. Rother K., Till G. O., Hansch G. M.. ( 1997;). The Complement System. New York:: Springer;.
    [Google Scholar]
  16. Shen X., Gumulak J., Yu H., French C. T., Zou N., Dybvig K.. ( 2000;). Gene rearrangements in the vsa locus of Mycoplasma pulmonis. . J Bacteriol 182:, 2900–2908. [CrossRef][PubMed]
    [Google Scholar]
  17. Simmons W. L., Dybvig K.. ( 2003;). The Vsa proteins modulate susceptibility of Mycoplasma pulmonis to complement killing, hemadsorption, and adherence to polystyrene. . Infect Immun 71:, 5733–5738. [CrossRef][PubMed]
    [Google Scholar]
  18. Simmons W. L., Dybvig K.. ( 2007;). Biofilms protect Mycoplasma pulmonis cells from lytic effects of complement and gramicidin. . Infect Immun 75:, 3696–3699. [CrossRef][PubMed]
    [Google Scholar]
  19. Simmons W. L., Zuhua C., Glass J. I., Simecka J. W., Cassell G. H., Watson H. L.. ( 1996;). Sequence analysis of the chromosomal region around and within the V-1-encoding gene of Mycoplasma pulmonis: evidence for DNA inversion as a mechanism for V-1 variation. . Infect Immun 64:, 472–479.[PubMed]
    [Google Scholar]
  20. Simmons W. L., Denison A. M., Dybvig K.. ( 2004;). Resistance of Mycoplasma pulmonis to complement lysis is dependent on the number of Vsa tandem repeats: shield hypothesis. . Infect Immun 72:, 6846–6851. [CrossRef][PubMed]
    [Google Scholar]
  21. Simmons W. L., Bolland J. R., Daubenspeck J. M., Dybvig K.. ( 2007;). A stochastic mechanism for biofilm formation by Mycoplasma pulmonis. . J Bacteriol 189:, 1905–1913. [CrossRef][PubMed]
    [Google Scholar]
  22. Taylor-Robinson D., Schorlemmer H. U., Furr P. M., Allison A. C.. ( 1978;). Macrophage secretion and the complement cleavage product C3a in the pathogenesis of infections by mycoplasmas and L-forms of bacteria and in immunity to these organisms. . Clin Exp Immunol 33:, 486–494.[PubMed]
    [Google Scholar]
  23. Yus E., Maier T., Michalodimitrakis K., van Noort V., Yamada T., Chen W. H., Wodke J. A., Güell M., Martínez S.. & other authors ( 2009;). Impact of genome reduction on bacterial metabolism and its regulation. . Science 326:, 1263–1268. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.058222-0
Loading
/content/journal/micro/10.1099/mic.0.058222-0
Loading

Data & Media loading...

Supplements

Movie file legend 

PDF

Movie file 

MOVIE
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error