1887

Abstract

, a normal inhabitant of the human oral cavity, is a potential live vaccine vehicle. Several pathogen-associated molecular patterns from that are recognized by antigen-presenting cells have recently been identified. In this study, we have identified that the cell-wall-anchored proteins SspA and SspB are immunostimulatory components of . SspA and SspB are members of the antigen I/II family of proteins widely expressed by viridans oral streptococci. The results showed that the mutant (OB219) lacking SspA and SspB had a reduced ability to induce cytokine/chemokine production in epithelial cells and bone-marrow-derived dendritic cells as compared with the parent strain (DL1). Purified SspA induced interleukin-6 and monocyte chemotatic protein-1 production from human lung epithelial A549 cells. The induction could be inhibited by a function-blocking anti-β1 integrin mAb and the purified SspA could bind to β1 integrin precoated on microtitre plates, suggesting that the induction was effected by SspA–β1 integrin interactions. The role of SspA and SspB in innate immunity was further demonstrated in a mouse intranasal challenge experiment, which showed that the clearance of OB219, the recruitment of neutrophils (as indicated by myeloperoxidase activity), and chemokine and cytokine production in the lungs of OB219-inoculated mice were delayed or reduced as compared with the DL1-inoculated mice. In addition to the above, OB219 was more sensitive to polymyxin, nisin and histatin-5 than DL1, suggesting that SspA and SspB also play a role in susceptibility to cationic antimicrobial peptides. Collectively, the results indicate that SspA and SspB are immunostimulatory components of and play an important role in modulating the host’s innate immunity.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.058073-0
2012-08-01
2020-01-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/8/2099.html?itemId=/content/journal/micro/10.1099/mic.0.058073-0&mimeType=html&fmt=ahah

References

  1. Al-Okla S., Chatenay-Rivauday C., Klein J. P., Wachsmann D.. ( 1999;). Involvement of α5β1 integrins in interleukin 8 production induced by oral viridans streptococcal protein I/IIf in cultured endothelial cells. Cell Microbiol1:157–168 [CrossRef][PubMed]
    [Google Scholar]
  2. Chan K. G., Mayer M., Davis E. M., Halperin S. A., Lin T. J., Lee S. F.. ( 2007;). Role of D-alanylation of Streptococcus gordonii lipoteichoic acid in innate and adaptive immunity. Infect Immun75:3033–3042 [CrossRef][PubMed]
    [Google Scholar]
  3. Ciabattini A., Cuppone A. M., Pulimeno R., Iannelli F., Pozzi G., Medaglini D.. ( 2006;). Stimulation of human monocytes with the gram-positive vaccine vector Streptococcus gordonii . Clin Vaccine Immunol13:1037–1043 [CrossRef][PubMed]
    [Google Scholar]
  4. Corinti S., Medaglini D., Cavani A., Rescigno M., Pozzi G., Ricciardi-Castagnoli P., Girolomoni G.. ( 1999;). Human dendritic cells very efficiently present a heterologous antigen expressed on the surface of recombinant gram-positive bacteria to CD4+ T lymphocytes. J Immunol163:3029–3036[PubMed]
    [Google Scholar]
  5. Davis E. M., Kennedy D., Halperin S. A., Lee S. F.. ( 2011;). Role of the cell wall microenvironment in expression of a heterologous SpaP-S1 fusion protein by Streptococcus gordonii . Appl Environ Microbiol77:1660–1666 [CrossRef][PubMed]
    [Google Scholar]
  6. Demuth D. R., Duan Y., Brooks W., Holmes A. R., McNab R., Jenkinson H. F.. ( 1996;). Tandem genes encode cell-surface polypeptides SspA and SspB which mediate adhesion of the oral bacterium Streptococcus gordonii to human and bacterial receptors. Mol Microbiol20:403–413 [CrossRef][PubMed]
    [Google Scholar]
  7. Demuth D. R., Irvine D. C., Costerton J. W., Cook G. S., Lamont R. J.. ( 2001;). Discrete protein determinant directs the species-specific adherence of Porphyromonas gingivalis to oral streptococci. Infect Immun69:5736–5741 [CrossRef][PubMed]
    [Google Scholar]
  8. Duan Y., Fisher E., Malamud D., Golub E., Demuth D. R.. ( 1994;). Calcium-binding properties of SSP-5, the Streptococcus gordonii M5 receptor for salivary agglutinin. Infect Immun62:5220–5226[PubMed]
    [Google Scholar]
  9. Egland P. G., L. D., Kolenbrander P. E.. ( 2001;). Identification of independent Streptococcus gordonii SspA and SspB functions in coaggregation with Actinomyces naeslundii . Infect Immun69:7512–7516 [CrossRef][PubMed]
    [Google Scholar]
  10. Heddle C., Nobbs A. H., Jakubovics N. S., Gal M., Mansell J. P., Dymock D., Jenkinson H. F.. ( 2003;). Host collagen signal induces antigen I/II adhesin and invasin gene expression in oral Streptococcus gordonii . Mol Microbiol50:597–607 [CrossRef][PubMed]
    [Google Scholar]
  11. Helmerhorst E. J., Troxler R. F., Oppenheim F. G.. ( 2001;). The human salivary peptide histatin 5 exerts its antifungal activity through the formation of reactive oxygen species. Proc Natl Acad Sci U S A98:14637–14642 [CrossRef][PubMed]
    [Google Scholar]
  12. Homonylo-McGavin M. K., Lee S. F.. ( 1996;). Role of the C terminus in antigen P1 surface localization in Streptococcus mutans and two related cocci. J Bacteriol178:801–807[PubMed]
    [Google Scholar]
  13. Jakubovics N. S., Strömberg N., van Dolleweerd C. J., Kelly C. G., Jenkinson H. F.. ( 2005;). Differential binding specificities of oral streptococcal antigen I/II family adhesins for human or bacterial ligands. Mol Microbiol55:1591–1605 [CrossRef][PubMed]
    [Google Scholar]
  14. Jenkinson H. F., Demuth D. R.. ( 1997;). Structure, function and immunogenicity of streptococcal antigen I/II polypeptides. Mol Microbiol23:183–190 [CrossRef][PubMed]
    [Google Scholar]
  15. Kawai T., Akira S.. ( 2005;). Pathogen recognition with Toll-like receptors. Curr Opin Immunol17:338–344 [CrossRef][PubMed]
    [Google Scholar]
  16. Kelly C. P., Evans P., Bergmeier L., Lee S. F., Progulske-Fox A., Harris A. C., Aitken A., Bleiweis A. S., Lehner T.. ( 1989;). Sequence analysis of the cloned streptococcal cell surface antigen I/II. FEBS Lett258:127–132 [CrossRef][PubMed]
    [Google Scholar]
  17. Knight J. B., Halperin S. A., West K. A., Lee S. F.. ( 2008;). Expression of a functional single-chain variable-fragment antibody against complement receptor 1 in Streptococcus gordonii . Clin Vaccine Immunol15:925–931 [CrossRef][PubMed]
    [Google Scholar]
  18. Laemmli U. K.. ( 1970;). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature227:680–685 [CrossRef][PubMed]
    [Google Scholar]
  19. Lamkin M. S., Oppenheim F. G.. ( 1993;). Structural features of salivary function. Crit Rev Oral Biol Med4:251–259[PubMed]
    [Google Scholar]
  20. Lee S. F.. ( 2003;). Oral colonization and immune responses to Streptococcus gordonii: potential use as a vector to induce antibodies against respiratory pathogens. Curr Opin Infect Dis16:231–235 [CrossRef][PubMed]
    [Google Scholar]
  21. Lee S. F., Halperin S. A., Wang H., MacArthur A.. ( 2002;). Oral colonization and immune responses to Streptococcus gordonii expressing a pertussis toxin S1 fragment in mice. FEMS Microbiol Lett208:175–178 [CrossRef][PubMed]
    [Google Scholar]
  22. Ma J. K. C., Kelly C. G., Munro G., Whiley R. A., Lehner T.. ( 1991;). Conservation of the gene encoding streptococcal antigen I/II in oral streptococci. Infect Immun59:2686–2694[PubMed]
    [Google Scholar]
  23. Mallaley P. P., Halperin S. A., Morris A., MacMillian A., Lee S. F.. ( 2006;). Expression of a pertussis toxin S1 fragment by inducible promoters in oral Streptococcus and the induction of immune responses during oral colonization in mice. Can J Microbiol52:436–444 [CrossRef][PubMed]
    [Google Scholar]
  24. Mathews M., Jia H. P., Guthmiller J. M., Losh G., Graham S., Johnson G. K., Tack B. F., McCray P. B. Jr. ( 1999;). Production of beta-defensin antimicrobial peptides by the oral mucosa and salivary glands. Infect Immun67:2740–2745[PubMed]
    [Google Scholar]
  25. Mayer M. L., Phillips C. M., Stadnyk A. W., Halperin S. A., Lee S. F.. ( 2009a;). Synergistic BM-DC activation and immune induction by the oral vaccine vector Streptococcus gordonii and exogenous tumor necrosis factor. Mol Immunol46:1883–1891 [CrossRef][PubMed]
    [Google Scholar]
  26. Mayer M. L., Phillips C. M., Townsend R. A., Halperin S. A., Lee S. F.. ( 2009b;). Differential activation of dendritic cells by Toll-like receptor agonists isolated from the Gram-positive vaccine vector Streptococcus gordonii . Scand J Immunol69:351–356 [CrossRef][PubMed]
    [Google Scholar]
  27. Neff L., Zeisel M., Druet V., Takeda K., Klein J. P., Sibilia J., Wachsmann D.. ( 2003;). ERK 1/2- and JNKs-dependent synthesis of interleukins 6 and 8 by fibroblast-like synoviocytes stimulated with protein I/II, a modulin from oral streptococci, requires focal adhesion kinase. J Biol Chem278:27721–27728 [CrossRef][PubMed]
    [Google Scholar]
  28. Nobbs A. H., Shearer B. H., Drobni M., Jepson M. A., Jenkinson H. F.. ( 2007;). Adherence and internalization of Streptococcus gordonii by epithelial cells involves β1 integrin recognition by SspA and SspB (antigen I/II family) polypeptides. Cell Microbiol9:65–83 [CrossRef][PubMed]
    [Google Scholar]
  29. Oggioni M. R., Medaglini D., Maggi T., Pozzi G.. ( 1999;). Engineering the gram-positive cell surface for construction of bacterial vaccine vectors. Methods19:163–173 [CrossRef][PubMed]
    [Google Scholar]
  30. Peterson S., Cline R. T., Tettelin H., Sharov V., Morrison D. A.. ( 2000;). Gene expression analysis of the Streptococcus pneumoniae competence regulons by use of DNA microarrays. J Bacteriol182:6192–6202 [CrossRef][PubMed]
    [Google Scholar]
  31. Rydengård V., Andersson Nordahl E., Schmidtchen A.. ( 2006;). Zinc potentiates the antibacterial effects of histidine-rich peptides against Enterococcus faecalis . FEBS J273:2399–2406 [CrossRef][PubMed]
    [Google Scholar]
  32. Standiford T. J., Kunkel S. L., Phan S. H., Rollins B. J., Strieter R. M.. ( 1991;). Alveolar macrophage-derived cytokines induce monocyte chemoattractant protein-1 expression from human pulmonary type II-like epithelial cells. J Biol Chem266:9912–9918[PubMed]
    [Google Scholar]
  33. Tremblay Y. D., Lo H., Li Y. H., Halperin S. A., Lee S. F.. ( 2009;). Expression of the Streptococcus mutans essential two-component regulatory system VicRK is pH and growth-phase dependent and controlled by the LiaFSR three-component regulatory system. Microbiology155:2856–2865 [CrossRef][PubMed]
    [Google Scholar]
  34. Vernier-Georgenthum A., al-Okla S., Gourieux B., Klein J. P., Wachsmann D.. ( 1998;). Protein I/II of oral viridans streptococci increases expression of adhesion molecules on endothelial cells and promotes transendothelial migration of neutrophils in vitro. Cell Immunol187:145–150 [CrossRef][PubMed]
    [Google Scholar]
  35. Zeisel M. B., Druet V. A., Sibilia J., Klein J. P., Quesniaux V., Wachsmann D.. ( 2005;). Cross talk between MyD88 and focal adhesion kinase pathways. J Immunol174:7393–7397[PubMed][CrossRef]
    [Google Scholar]
  36. Zhou X., Chen Q., Moore J., Kolls J. K., Halperin S., Wang J.. ( 2009;). Critical role of the interleukin-17/interleukin-17 receptor axis in regulating host susceptibility to respiratory infection with Chlamydia species. Infect Immun77:5059–5070 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.058073-0
Loading
/content/journal/micro/10.1099/mic.0.058073-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error