1887

Abstract

The locus necessary for the utilization of erythritol as a sole carbon source, contains 17 genes, including genes that encode an ABC transporter necessary for the transport of erythritol, as well as the genes encoding EryA, EryB, EryC, TpiB and the regulators EryD and EryR (SMc01615). Construction of defined deletions and complementation experiments show that the other genes at this locus encode products that are necessary for the catabolism of adonitol (ribitol) and -arabitol, but not -arabitol. These analyses show that aside from one gene that is specific for the catabolism of -arabitol (, ), the rest of the catabolic genes are necessary for both polyols (, ; , ; , ). Genetic and biochemical data show that in addition to utilizing erythritol as a substrate, EryA is also capable of utilizing adonitol and -arabitol. Similarly, transport experiments using labelled erythritol show that adonitol, -arabitol and erythritol share a common transporter (MptABCDE). Quantitative RT-PCR experiments show that transcripts containing genes necessary for adonitol and -arabitol utilization are induced by these sugars in an -dependent manner.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.057877-0
2012-08-01
2021-10-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/8/2180.html?itemId=/content/journal/micro/10.1099/mic.0.057877-0&mimeType=html&fmt=ahah

References

  1. Adhya S. L., Shapiro J. A. ( 1969). The galactose operon of E. coli K-12. I. Structural and pleiotropic mutations of the operon. Genetics 62:231–247[PubMed]
    [Google Scholar]
  2. Alexeyev M. F. ( 1999). The pKNOCK series of broad-host-range mobilizable suicide vectors for gene knockout and targeted DNA insertion into the chromosome of gram-negative bacteria. Biotechniques 26:824–826, 828[PubMed]
    [Google Scholar]
  3. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J. H., Zhang Z., Miller W., Lipman D. J. ( 1997). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [View Article][PubMed]
    [Google Scholar]
  4. Anderson R. L., Sapico V. L. ( 1975). d-Fructose (d-mannose) kinase. Methods Enzymol 42:39–43 [View Article][PubMed]
    [Google Scholar]
  5. Clark S. R. D., Oresnik I. J., Hynes M. F. ( 2001). RpoN of Rhizobium leguminosarum bv. viciae strain VF39SM plays a central role in FnrN-dependent microaerobic regulation of genes involved in nitrogen fixation. Mol Gen Genet 264:623–633 [View Article][PubMed]
    [Google Scholar]
  6. Dahms A. S., Anderson R. L. ( 1969). 2-Keto-3-deoxyl-l-arabonate aldolase and its role in a new pathway of l-arabinose degradation. Biochem Biophys Res Commun 36:809–814 [View Article][PubMed]
    [Google Scholar]
  7. Dunn M. F., Araíza G., Finan T. M. ( 2001). Cloning and characterization of the pyruvate carboxylase from Sinorhizobium meliloti Rm1021. Arch Microbiol 176:355–363 [View Article][PubMed]
    [Google Scholar]
  8. Finan T. M., Hartweig E., LeMieux K., Bergman K., Walker G. C., Signer E. R. ( 1984). General transduction in Rhizobium meliloti . J Bacteriol 159:120–124[PubMed]
    [Google Scholar]
  9. Finan T. M., Hirsch A. M., Leigh J. A., Johansen E., Kuldau G. A., Deegan S., Walker G. C., Signer E. R. ( 1985). Symbiotic mutants of Rhizobium meliloti that uncouple plant from bacterial differentiation. Cell 40:869–877 [View Article][PubMed]
    [Google Scholar]
  10. Finan T. M., Kunkel B., De Vos G. F., Signer E. R. ( 1986). Second symbiotic megaplasmid in Rhizobium meliloti carrying exopolysaccharide and thiamine synthesis genes. J Bacteriol 167:66–72[PubMed]
    [Google Scholar]
  11. Finan T. M., Oresnik I., Bottacin A. ( 1988). Mutants of Rhizobium meliloti defective in succinate metabolism. J Bacteriol 170:3396–3403[PubMed]
    [Google Scholar]
  12. Fry J., Wood M., Poole P. S. ( 2001). Investigation of myo-inositol catabolism in Rhizobium leguminosarum bv. viciae and its effect on nodulation competitiveness. Mol Plant Microbe Interact 14:1016–1025 [View Article][PubMed]
    [Google Scholar]
  13. Geddes B. A., Pickering B. S., Poysti N. J., Collins H., Yudistira H., Oresnik I. J. ( 2010). A locus necessary for the transport and catabolism of erythritol in Sinorhizobium meliloti . Microbiology 156:2970–2981 [View Article][PubMed]
    [Google Scholar]
  14. Geer L. Y., Domrachev M., Lipman D. J., Bryant S. H. ( 2002). CDART: protein homology by domain architecture. Genome Res 12:1619–1623 [View Article][PubMed]
    [Google Scholar]
  15. Ghalambor M. A., Heath E. C. ( 1962). The metabolism of L-fucose. II. The enzymatic cleavage of L-fuculose 1-phosphate. J Biol Chem 237:2427–2433[PubMed]
    [Google Scholar]
  16. Hanahan D. ( 1983). Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580 [View Article][PubMed]
    [Google Scholar]
  17. House B. L., Mortimer M. W., Kahn M. L. ( 2004). New recombination methods for Sinorhizobium meliloti genetics. Appl Environ Microbiol 70:2806–2815 [View Article][PubMed]
    [Google Scholar]
  18. Hunter S., Apweiler R., Attwood T. K., Bairoch A., Bateman A., Binns D., Bork P., Das U., Daugherty L. & other authors ( 2009). InterPro: the integrative protein signature database. Nucleic Acids Res 37:Database issueD211–D215 [View Article][PubMed]
    [Google Scholar]
  19. Jacob A. I., Adham S. A., Capstick D. S., Clark S. R. D., Spence T., Charles T. C. ( 2008). Mutational analysis of the Sinorhizobium meliloti short-chain dehydrogenase/reductase family reveals substantial contribution to symbiosis and catabolic diversity. Mol Plant Microbe Interact 21:979–987 [View Article][PubMed]
    [Google Scholar]
  20. Jones J. D. G., Gutterson N. ( 1987). An efficient mobilizable cosmid vector, pRK7813, and its use in a rapid method for marker exchange in Pseudomonas fluorescens strain HV37a. Gene 61:299–306 [View Article][PubMed]
    [Google Scholar]
  21. Kohler P. R. A., Zheng J. Y., Schoffers E., Rossbach S. ( 2010). Inositol catabolism, a key pathway in Sinorhizobium meliloti for competitive host nodulation. Appl Environ Microbiol 76:7972–7980 [View Article][PubMed]
    [Google Scholar]
  22. Krol E., Becker A. ( 2004). Global transcriptional analysis of the phosphate starvation response in Sinorhizobium meliloti strains 1021 and 2011. Mor Gen Genet 272:1–17 [View Article][PubMed]
    [Google Scholar]
  23. LeBlanc D. J., Mortlock R. P. ( 1971). Metabolism of d-arabinose: a new pathway in Escherichia coli . J Bacteriol 106:90–96[PubMed]
    [Google Scholar]
  24. Lodwig E., Poole P. ( 2003). Metabolism of Rhizobium bacteroids. Crit Rev Plant Sci 22:37–78 [View Article]
    [Google Scholar]
  25. Luo Y., Samuel J., Mosimann S. C., Lee J. E., Tanner M. E., Strynadka N. C. ( 2001). The structure of l-ribulose-5-phosphate 4-epimerase: an aldolase-like platform for epimerization. Biochemistry 40:14763–14771 [View Article][PubMed]
    [Google Scholar]
  26. Martinez De Drets G., Arias A. ( 1970). Metabolism of some polyols by Rhizobium meliloti . J Bacteriol 103:97–103[PubMed]
    [Google Scholar]
  27. Meade H. M., Long S. R., Ruvkun G. B., Brown S. E., Ausubel F. M. R. ( 1982). Physical and genetic characterization of symbiotic and auxotrophic mutants of Rhizobium meliloti induced by transposon Tn5 mutagenesis. J Bacteriol 149:114–122[PubMed]
    [Google Scholar]
  28. Miller-Williams M., Loewen P. C., Oresnik I. J. ( 2006). Isolation of salt-sensitive mutants of Sinorhizobium meliloti strain Rm1021. Microbiology 152:2049–2059 [View Article][PubMed]
    [Google Scholar]
  29. Mortlock R. P. ( 1984). The utilization of pentitols in the studies of the evolution of enzyme pathways. Microorganisms as Model Systems for Studying Evolution1–21 Mortlock R. P. New York: Plenum Press; [CrossRef]
    [Google Scholar]
  30. Mortlock R. P., Wood W. A. ( 1964a). Metabolism of pentoses and pentitols by Aerobacter aerogenes. I. Demonstration of pentose isomerase, penulokinase, and pentitiol dehydrogenase enzyme families. J Bacteriol 88:838–844[PubMed]
    [Google Scholar]
  31. Mortlock R. P., Wood W. A. ( 1964b). Metabolism of pentoses and pentitols by Aerobacter aerogenes. II. Mechanism of acquistion of kinase, isomerase, and dehydrogenase activity. J Bacteriol 88:845–849[PubMed]
    [Google Scholar]
  32. Mortlock R. P., Fossitt D. D., Petering D. H., Wood W. A. ( 1965a). Metabolism of pentoses and pentitols by Aerobacter aerogenes. III. Physical and immunological properties of pentitol dehydrogenases and pentulokinases. J Bacteriol 89:129–135[PubMed]
    [Google Scholar]
  33. Mortlock R. P., Fossitt D. D., Wood W. A. ( 1965b). A basis for utlization of unnatural pentoses and pentitols by Aerobacter aerogenes . Proc Natl Acad Sci U S A 54:572–579 [View Article][PubMed]
    [Google Scholar]
  34. Oresnik I. J., Layzell D. B. ( 1994). Composition and distribution of adenylates in soybean (Glycine max L.) nodule tissue. Plant Physiol 104:217–225[PubMed]
    [Google Scholar]
  35. Oresnik I. J., Pacarynuk L. A., O'Brien S. A. P., Yost C. K., Hynes M. F. ( 1998). Plasmid encoded catabolic genes in Rhizobium leguminosarum bv. trifolii: evidence for a plant-inducible rhamnose locus involved in competition for nodulation. Mol Plant Microbe Interact 11:1175–1185 [View Article]
    [Google Scholar]
  36. Pedrosa F. O., Zancan G. T. ( 1974). l-Arabinose metabolism in Rhizobium japonicum . J Bacteriol 119:336–338[PubMed]
    [Google Scholar]
  37. Pickering B. S., Oresnik I. J. ( 2008). Formate-dependent autotrophic growth in Sinorhizobium meliloti . J Bacteriol 190:6409–6418 [View Article][PubMed]
    [Google Scholar]
  38. Platt R., Dresner S. K., Park S. K., Phillips G. J. ( 2000). Genetic systems for reversible integration of DNA constructs and lacZ gene fusions into the Escherichia coli chromosome. Plasmid 43:12–23[PubMed] [CrossRef]
    [Google Scholar]
  39. Poysti N. J., Oresnik I. J. ( 2007). Characterization of Sinorhizobium meliloti triose phosphate isomerase genes. J Bacteriol 189:3445–3451 [View Article][PubMed]
    [Google Scholar]
  40. Poysti N. J., Loewen E. D., Wang Z., Oresnik I. J. ( 2007). Sinorhizobium meliloti pSymB carries genes necessary for arabinose transport and catabolism. Microbiology 153:727–736 [View Article][PubMed]
    [Google Scholar]
  41. Primrose S. B., Ronson C. W. ( 1980). Polyol metabolism by Rhizobium trifolii . J Bacteriol 141:1109–1114[PubMed]
    [Google Scholar]
  42. Quandt J., Hynes M. F. ( 1993). Versatile suicide vectors which allow direct selection for gene replacement in gram-negative bacteria. Gene 127:15–21 [View Article][PubMed]
    [Google Scholar]
  43. Ramachandran V. K., East A. K., Karunakaran R., Downie J. A., Poole P. S. ( 2011). Adaptation of Rhizobium leguminosarum to pea, alfalfa and sugar beet rhizospheres investigated by comparative transcriptomics. Genome Biol 12:R106 [View Article][PubMed]
    [Google Scholar]
  44. Richardson J. S., Hynes M. F., Oresnik I. J. ( 2004). A genetic locus necessary for rhamnose uptake and catabolism in Rhizobium leguminosarum bv. trifolii . J Bacteriol 186:8433–8442 [View Article][PubMed]
    [Google Scholar]
  45. Richardson J. S., Carpena X., Switala J., Perez-Luque R., Donald L. J., Loewen P. C., Oresnik I. J. ( 2008). RhaU of Rhizobium leguminosarum is a rhamnose mutarotase. J Bacteriol 190:2903–2910 [View Article][PubMed]
    [Google Scholar]
  46. Ronson C. W., Primrose S. B. ( 1979). Effect of glucose on polyol metabolism by Rhizobium trifolii . J Bacteriol 139:1075–1078[PubMed]
    [Google Scholar]
  47. Sambrook J., Fritsch E. F., Maniatis T. ( 1989). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  48. Sangari F. J., Agüero J., García-Lobo J. M. ( 2000). The genes for erythritol catabolism are organized as an inducible operon in Brucella abortus . Microbiology 146:487–495[PubMed]
    [Google Scholar]
  49. Schroeder B. K., House B. L., Mortimer M. W., Yurgel S. N., Maloney S. C., Ward K. L., Kahn M. L. ( 2005). Development of a functional genomics platform for Sinorhizobium meliloti: construction of an ORFeome. Appl Environ Microbiol 71:5858–5864 [View Article][PubMed]
    [Google Scholar]
  50. Simon R., Priefer U., Pühler A. ( 1983). A broad host range mobilization system for in vivo engineering: transposon mutagenesis in gram-negative bacteria. Biotechniques 1:784–791 [View Article]
    [Google Scholar]
  51. Sperry J. F., Robertson D. C. ( 1975). Inhibition of growth by erythritol catabolism in Brucella abortus . J Bacteriol 124:391–397[PubMed]
    [Google Scholar]
  52. Vincent J. M. ( 1970). A manual for the Practical Study of Root-Nodule Bacteria Oxford, UK: Blackwell Scientific Publications;
    [Google Scholar]
  53. Wang C., Meek D. J., Panchal P., Boruvka N., Archibald F. S., Driscoll B. T., Charles T. C. ( 2006). Isolation of poly-3-hydroxybutyrate metabolism genes from complex microbial communities by phenotypic complementation of bacterial mutants. Appl Environ Microbiol 72:384–391 [View Article][PubMed]
    [Google Scholar]
  54. White J., Prell J., James E. K., Poole P. ( 2007). Nutrient sharing between symbionts. Plant Physiol 144:604–614 [View Article][PubMed]
    [Google Scholar]
  55. Wood W. A., McDonough M. J., Jacobs L. B. ( 1961). Ribitol and D-arabitol utilization by Aerobacter aerogenes . J Biol Chem 236:2190–2195[PubMed]
    [Google Scholar]
  56. Yost C. K., Rath A. M., Noel T. C., Hynes M. F. ( 2006). Characterization of genes involved in erythritol catabolism in Rhizobium leguminosarum bv. viciae . Microbiology 152:2061–2074 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.057877-0
Loading
/content/journal/micro/10.1099/mic.0.057877-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error