1887

Abstract

Proteolytic control can govern the levels of specific regulatory factors, such as Spx, a transcriptional regulator of the oxidative stress response in Gram-positive bacteria. Under oxidative stress, Spx concentration is elevated and upregulates transcription of genes that function in the stress response. When stress is alleviated, proteolysis of Spx catalysed by ClpXP reduces Spx concentration. Proteolysis is enhanced by the substrate recognition factor YjbH, which possesses a His–Cys-rich region at its N terminus. However, mutations that generate H12A, C13A, H14A, H16A and C31/34A residue substitutions in the N terminus of YjbH (YjbH) do not affect functionality in Spx proteolytic control and . Because of difficulties in obtaining soluble YjbH, the gene was cloned, which yielded soluble YjbH protein. Despite its lack of a His–Cys-rich region, YjbH complements a null mutant, and shows high activity when combined with ClpXP and Spx in an approximately 30 : 1 (ClpXP/Spx : YjbH) molar ratio. interaction experiments showed that Spx and the protease-resistant Spx (in which the last two residues of Spx are replaced with two Asp residues) bind to YjbH, but deletion of 12 residues from the Spx C terminus (SpxΔC) significantly diminished interaction and proteolytic degradation, indicating that the C terminus of Spx is important for YjbH recognition. These experiments also showed that Spx, but not YjbH, interacts with ClpX. Kinetic measurements for Spx proteolysis by ClpXP in the presence and absence of YjbH suggest that YjbH overcomes non-productive Spx–ClpX interaction, resulting in rapid degradation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.057661-0
2012-05-01
2019-08-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/5/1268.html?itemId=/content/journal/micro/10.1099/mic.0.057661-0&mimeType=html&fmt=ahah

References

  1. Bolon D. N. , Wah D. A. , Hersch G. L. , Baker T. A. , Sauer R. T. . ( 2004; ). Bivalent tethering of SspB to ClpXP is required for efficient substrate delivery: a protein-design study. . Mol Cell 13:, 443–449. [CrossRef] [PubMed]
    [Google Scholar]
  2. Britton R. A. , Eichenberger P. , Gonzalez-Pastor J. E. , Fawcett P. , Monson R. , Losick R. , Grossman A. D. . ( 2002; ). Genome-wide analysis of the stationary-phase sigma factor (sigma-H) regulon of Bacillus subtilis . . J Bacteriol 184:, 4881–4890. [CrossRef] [PubMed]
    [Google Scholar]
  3. Chaibenjawong P. , Foster S. J. . ( 2011; ). Desiccation tolerance in Staphylococcus aureus . . Arch Microbiol 193:, 125–135. [CrossRef] [PubMed]
    [Google Scholar]
  4. Charbonnier Y. , Gettler B. , François P. , Bento M. , Renzoni A. , Vaudaux P. , Schlegel W. , Schrenzel J. . ( 2005; ). A generic approach for the design of whole-genome oligoarrays, validated for genomotyping, deletion mapping and gene expression analysis on Staphylococcus aureus . . BMC Genomics 6:, 95. [CrossRef] [PubMed]
    [Google Scholar]
  5. Chien P. , Perchuk B. S. , Laub M. T. , Sauer R. T. , Baker T. A. . ( 2007; ). Direct and adaptor-mediated substrate recognition by an essential AAA+ protease. . Proc Natl Acad Sci U S A 104:, 6590–6595. [CrossRef] [PubMed]
    [Google Scholar]
  6. Chowdhury T. , Chien P. , Ebrahim S. , Sauer R. T. , Baker T. A. . ( 2010; ). Versatile modes of peptide recognition by the ClpX N domain mediate alternative adaptor-binding specificities in different bacterial species. . Protein Sci 19:, 242–254. [CrossRef] [PubMed]
    [Google Scholar]
  7. Davis J. H. , Baker T. A. , Sauer R. T. . ( 2009; ). Engineering synthetic adaptors and substrates for controlled ClpXP degradation. . J Biol Chem 284:, 21848–21855. [CrossRef] [PubMed]
    [Google Scholar]
  8. Dougan D. A. , Reid B. G. , Horwich A. L. , Bukau B. . ( 2002; ). ClpS, a substrate modulator of the ClpAP machine. . Mol Cell 9:, 673–683. [CrossRef] [PubMed]
    [Google Scholar]
  9. Engman J. , Rogstam A. , Frees D. , Ingmer H. , von Wachenfeldt C. . ( 2012; ). The YjbH adaptor protein enhances proteolysis of the transcriptional regulator Spx in Staphylococcus aureus . . J Bacteriol 194:, 1186–1194. [CrossRef] [PubMed]
    [Google Scholar]
  10. Flynn J. M. , Neher S. B. , Kim Y. I. , Sauer R. T. , Baker T. A. . ( 2003; ). Proteomic discovery of cellular substrates of the ClpXP protease reveals five classes of ClpX-recognition signals. . Mol Cell 11:, 671–683. [CrossRef] [PubMed]
    [Google Scholar]
  11. Fouet A. , Jin S. F. , Raffel G. , Sonenshein A. L. . ( 1990; ). Multiple regulatory sites in the Bacillus subtilis citB promoter region. . J Bacteriol 172:, 5408–5415.[PubMed]
    [Google Scholar]
  12. Garg S. K. , Kommineni S. , Henslee L. , Zhang Y. , Zuber P. . ( 2009; ). The YjbH protein of Bacillus subtilis enhances ClpXP-catalyzed proteolysis of Spx. . J Bacteriol 191:, 1268–1277. [CrossRef] [PubMed]
    [Google Scholar]
  13. Göhring N. , Fedtke I. , Xia G. , Jorge A. M. , Pinho M. G. , Bertsche U. , Peschel A. . ( 2011; ). New role of the disulfide stress effector YjbH in β-lactam susceptibility of Staphylococcus aureus . . Antimicrob Agents Chemother 55:, 5452–5458. [CrossRef] [PubMed]
    [Google Scholar]
  14. Harwood C. R. , Cutting S. M. . ( 1990; ). Molecular Biological Methods for Bacillus. Chichester, UK:: Wiley;.
    [Google Scholar]
  15. Kenniston J. A. , Baker T. A. , Fernandez J. M. , Sauer R. T. . ( 2003; ). Linkage between ATP consumption and mechanical unfolding during the protein processing reactions of an AAA+ degradation machine. . Cell 114:, 511–520. [CrossRef] [PubMed]
    [Google Scholar]
  16. Kommineni S. , Garg S. K. , Chan C. M. , Zuber P. . ( 2011; ). YjbH-enhanced proteolysis of Spx by ClpXP in Bacillus subtilis is inhibited by the small protein YirB (YuzO). . J Bacteriol 193:, 2133–2140. [CrossRef] [PubMed]
    [Google Scholar]
  17. Larsson J. T. , Rogstam A. , von Wachenfeldt C. . ( 2007; ). YjbH is a novel negative effector of the disulphide stress regulator, Spx, in Bacillus subtilis . . Mol Microbiol 66:, 669–684. [CrossRef] [PubMed]
    [Google Scholar]
  18. Levchenko I. , Seidel M. , Sauer R. T. , Baker T. A. . ( 2000; ). A specificity-enhancing factor for the ClpXP degradation machine. . Science 289:, 2354–2356. [CrossRef] [PubMed]
    [Google Scholar]
  19. Levchenko I. , Grant R. A. , Flynn J. M. , Sauer R. T. , Baker T. A. . ( 2005; ). Versatile modes of peptide recognition by the AAA+ adaptor protein SspB. . Nat Struct Mol Biol 12:, 520–525. [CrossRef] [PubMed]
    [Google Scholar]
  20. Lin A. A. , Zuber P. . ( 2012; ). Evidence that a single monomer of Spx can productively interact with RNA polymerase in Bacillus subtilis . . J Bacteriol 194:, 1697–1707.[PubMed] [CrossRef]
    [Google Scholar]
  21. Liu J. , Cosby W. M. , Zuber P. . ( 1999; ). Role of Lon and ClpX in the post-translational regulation of a sigma subunit of RNA polymerase required for cellular differentiation in Bacillus subtilis . . Mol Microbiol 33:, 415–428. [CrossRef] [PubMed]
    [Google Scholar]
  22. Miller J. H. . ( 1972; ). Experiments in Molecular Genetics. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  23. Nakano M. M. , Marahiel M. A. , Zuber P. . ( 1988; ). Identification of a genetic locus required for biosynthesis of the lipopeptide antibiotic surfactin in Bacillus subtilis . . J Bacteriol 170:, 5662–5668.[PubMed]
    [Google Scholar]
  24. Nakano M. M. , Hajarizadeh F. , Zhu Y. , Zuber P. . ( 2001; ). Loss-of-function mutations in yjbD result in ClpX- and ClpP-independent competence development of Bacillus subtilis . . Mol Microbiol 42:, 383–394. [CrossRef] [PubMed]
    [Google Scholar]
  25. Nakano S. , Zheng G. , Nakano M. M. , Zuber P. . ( 2002; ). Multiple pathways of Spx (YjbD) proteolysis in Bacillus subtilis . . J Bacteriol 184:, 3664–3670. [CrossRef] [PubMed]
    [Google Scholar]
  26. Nakano S. , Nakano M. M. , Zhang Y. , Leelakriangsak M. , Zuber P. . ( 2003; ). A regulatory protein that interferes with activator-stimulated transcription in bacteria. . Proc Natl Acad Sci U S A 100:, 4233–4238. [CrossRef] [PubMed]
    [Google Scholar]
  27. Nakano S. , Erwin K. N. , Ralle M. , Zuber P. . ( 2005; ). Redox-sensitive transcriptional control by a thiol/disulphide switch in the global regulator, Spx. . Mol Microbiol 55:, 498–510. [CrossRef] [PubMed]
    [Google Scholar]
  28. Nakano M. M. , Lin A. , Zuber C. S. , Newberry K. J. , Brennan R. G. , Zuber P. . ( 2010; ). Promoter recognition by a complex of Spx and the C-terminal domain of the RNA polymerase α subunit. . PLoS ONE 5:, e8664. [CrossRef] [PubMed]
    [Google Scholar]
  29. Neher S. B. , Villén J. , Oakes E. C. , Bakalarski C. E. , Sauer R. T. , Gygi S. P. , Baker T. A. . ( 2006; ). Proteomic profiling of ClpXP substrates after DNA damage reveals extensive instability within SOS regulon. . Mol Cell 22:, 193–204. [CrossRef] [PubMed]
    [Google Scholar]
  30. Nicholson W. , Setlow P. . ( 1990; ). Sporulation, germination and outgrowth. . In Molecular Biological Methods for Bacillus, pp. 391–450. Edited by Harwood C. R. , Cutting S. M. . . Chichester, UK:: Wiley;.
    [Google Scholar]
  31. Persuh M. , Mandic-Mulec I. , Dubnau D. . ( 2002; ). A MecA paralog, YpbH, binds ClpC, affecting both competence and sporulation. . J Bacteriol 184:, 2310–2313. [CrossRef] [PubMed]
    [Google Scholar]
  32. Porankiewicz J. , Wang J. , Clarke A. K. . ( 1999; ). New insights into the ATP-dependent Clp protease: Escherichia coli and beyond. . Mol Microbiol 32:, 449–458. [CrossRef] [PubMed]
    [Google Scholar]
  33. Schlothauer T. , Mogk A. , Dougan D. A. , Bukau B. , Turgay K. . ( 2003; ). MecA, an adaptor protein necessary for ClpC chaperone activity. . Proc Natl Acad Sci U S A 100:, 2306–2311. [CrossRef] [PubMed]
    [Google Scholar]
  34. Zemansky J. , Kline B. C. , Woodward J. J. , Leber J. H. , Marquis H. , Portnoy D. A. . ( 2009; ). Development of a mariner-based transposon and identification of Listeria monocytogenes determinants, including the peptidyl-prolyl isomerase PrsA2, that contribute to its hemolytic phenotype. . J Bacteriol 191:, 3950–3964. [CrossRef] [PubMed]
    [Google Scholar]
  35. Zhang Y. , Zuber P. . ( 2007; ). Requirement of the zinc-binding domain of ClpX for Spx proteolysis in Bacillus subtilis and effects of disulfide stress on ClpXP activity. . J Bacteriol 189:, 7669–7680. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.057661-0
Loading
/content/journal/micro/10.1099/mic.0.057661-0
Loading

Data & Media loading...

Supplementary material 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error