1887

Abstract

Evidence for ageing in symmetrically dividing bacteria such as has historically been conflicting. Early work found weak or no evidence. More recent studies found convincing evidence, but negative results are still encountered. Because bacterial ageing is believed to result from non-genetic (e.g. oxidative) damage, we tested the possibility that the negative outcomes resulted from the lack of an extrinsic damage agent. We found that streptomycin, which produces mistranslated proteins that are more vulnerable to oxidation, was able to induce both damage and ageing in bacterial populations. A dosage effect relating the level of damage to the concentration of streptomycin was observed. Our results explain the previous inconsistencies, because all studies that failed to find evidence for bacterial ageing did not use a damage agent. However, all studies that succeeded in finding evidence utilized fluorescent proteins as a visual marker. We suggest that ageing in those studies was induced by the harmful effects of an extrinsic factor, such as the proteins themselves or the excitation light. Thus, all of the earlier studies can be reconciled and bacterial ageing is a real phenomenon. However, the study and observation of bacterial ageing require the addition of an extrinsic damage agent.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.057240-0
2012-06-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/6/1553.html?itemId=/content/journal/micro/10.1099/mic.0.057240-0&mimeType=html&fmt=ahah

References

  1. Ackermann M. , Stearns S. C. , Jenal U. . ( 2003; ). Senescence in a bacterium with asymmetric division. . Science 300:, 1920. [CrossRef] [PubMed]
    [Google Scholar]
  2. Ackermann M. , Chao L. , Bergstrom C. T. , Doebeli M. . ( 2007; ). On the evolutionary origin of aging. . Aging Cell 6:, 235–244. [CrossRef] [PubMed]
    [Google Scholar]
  3. Blattner F. R. , Plunkett G. III , Bloch C. A. , Perna N. T. , Burland V. , Riley M. , Collado-Vides J. , Glasner J. D. , Rode C. K. et al. ( 1997; ). The complete genome sequence of Escherichia coli K-12. . Science 277:, 1453–1462. [CrossRef] [PubMed]
    [Google Scholar]
  4. Campisi J. . ( 2005; ). Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. . Cell 120:, 513–522. [CrossRef] [PubMed]
    [Google Scholar]
  5. Chao L. . ( 2010; ). A model for damage load and its implications for the evolution of bacterial aging. . PLoS Genet 6:, e1001076. [CrossRef] [PubMed]
    [Google Scholar]
  6. Doke N. , Miura Y. , Sanchez L. M. , Park H. J. , Noritake T. , Yoshioka H. , Kawakita K. . ( 1996; ). The oxidative burst protects plants against pathogen attack: mechanism and role as an emergency signal for plant bio-defence – a review. . Gene 179:, 45–51. [CrossRef] [PubMed]
    [Google Scholar]
  7. Dukan S. , Farewell A. , Ballesteros M. , Taddei F. , Radman M. , Nyström T. . ( 2000; ). Protein oxidation in response to increased transcriptional or translational errors. . Proc Natl Acad Sci U S A 97:, 5746–5749. [CrossRef] [PubMed]
    [Google Scholar]
  8. Edelmann P. , Gallant J. . ( 1977; ). Mistranslation in E. coli . . Cell 10:, 131–137. [CrossRef] [PubMed]
    [Google Scholar]
  9. Ferber D. . ( 2005; ). Microbiology. Immortality dies as bacteria show their age. . Science 307:, 656. [CrossRef] [PubMed]
    [Google Scholar]
  10. Hayflick L. . ( 1965; ). Limited in vitro lifetime of human diploid cell strains. . Exp Cell Res 37:, 614–636. [CrossRef] [PubMed]
    [Google Scholar]
  11. Kirkwood T. B. , Holliday R. . ( 1979; ). The evolution of ageing and longevity. . Proc R Soc Lond B Biol Sci 205:, 531–546. [CrossRef] [PubMed]
    [Google Scholar]
  12. Kirkwood T. B. L. , Melov S. . ( 2011; ). On the programmed/non-programmed nature of ageing within the life history. . Curr Biol 21:, R701–R707. [CrossRef] [PubMed]
    [Google Scholar]
  13. Książek K. . ( 2010; ). Let’s stop overlooking bacterial aging. . Biogerontology 11:, 717–723. [CrossRef] [PubMed]
    [Google Scholar]
  14. Lambeth J. D. . ( 2004; ). NOX enzymes and the biology of reactive oxygen. . Nat Rev Immunol 4:, 181–189. [CrossRef] [PubMed]
    [Google Scholar]
  15. Lele U. N. , Baig U. I. , Watve M. G. . ( 2011; ). Phenotypic plasticity and effects of selection on cell division symmetry in Escherichia coli . . PLoS ONE 6:, e14516. [CrossRef] [PubMed]
    [Google Scholar]
  16. Lindner A. B. , Madden R. , Demarez A. , Stewart E. J. , Taddei F. . ( 2008; ). Asymmetric segregation of protein aggregates is associated with cellular aging and rejuvenation. . Proc Natl Acad Sci U S A 105:, 3076–3081. [CrossRef] [PubMed]
    [Google Scholar]
  17. Mortimer R. K. , Johnston J. R. . ( 1959; ). Life span of individual yeast cells. . Nature 183:, 1751–1752. [CrossRef] [PubMed]
    [Google Scholar]
  18. Neidhardt F. C. , Ingraham J. L. , Schaechter M. . ( 1990; ). Physiology of the Bacterial Cell. A Molecular Approach. Sunderland, MA:: Sinauer Associates;.
    [Google Scholar]
  19. Nyström T. . ( 2002; ). Aging in bacteria. . Curr Opin Microbiol 5:, 596–601. [CrossRef] [PubMed]
    [Google Scholar]
  20. Partridge L. , Barton N. H. . ( 1993; ). Optimality, mutation and the evolution of ageing. . Nature 362:, 305–311. [CrossRef] [PubMed]
    [Google Scholar]
  21. Powell E. O. , Errington F. P. . ( 1963; ). Generation times of individual bacteria: some corroborative measurements. . J Gen Microbiol 31:, 315–327.[PubMed] [CrossRef]
    [Google Scholar]
  22. Rang C. , Galen J. E. , Kaper J. B. , Chao L. . ( 2003; ). Fitness cost of the green fluorescent protein in gastrointestinal bacteria. . Can J Microbiol 49:, 531–537. [CrossRef] [PubMed]
    [Google Scholar]
  23. Rang C. U. , Peng A. Y. , Chao L. . ( 2011; ). Temporal dynamics of bacterial aging and rejuvenation. . Curr Biol 21:, 1813–1816. [CrossRef] [PubMed]
    [Google Scholar]
  24. Regoes R. R. , Wiuff C. , Zappala R. M. , Garner K. N. , Baquero F. , Levin B. R. . ( 2004; ). Pharmacodynamic functions: a multiparameter approach to the design of antibiotic treatment regimens. . Antimicrob Agents Chemother 48:, 3670–3676. [CrossRef] [PubMed]
    [Google Scholar]
  25. Rose M. R. . ( 1991; ). Evolutionary Biology of Aging. Oxford:: Oxford University Press;.
    [Google Scholar]
  26. Schaechter M. , Williamson J. P. , Hood J. R. Jr , Koch A. L. . ( 1962; ). Growth, cell and nuclear divisions in some bacteria. . J Gen Microbiol 29:, 421–434.[PubMed] [CrossRef]
    [Google Scholar]
  27. Stewart E. J. , Madden R. , Paul G. , Taddei F. . ( 2005; ). Aging and death in an organism that reproduces by morphologically symmetric division. . PLoS Biol 3:, e45. [CrossRef] [PubMed]
    [Google Scholar]
  28. Turke P. W. . ( 2008; ). Williams’s theory of the evolution of senescence: still useful at fifty. . Q Rev Biol 83:, 243–256. [CrossRef] [PubMed]
    [Google Scholar]
  29. Veening J. W. , Stewart E. J. , Berngruber T. W. , Taddei F. , Kuipers O. P. , Hamoen L. W. . ( 2008; ). Bet-hedging and epigenetic inheritance in bacterial cell development. . Proc Natl Acad Sci U S A 105:, 4393–4398. [CrossRef] [PubMed]
    [Google Scholar]
  30. Wang P. , Robert L. , Pelletier J. , Dang W. L. , Taddei F. , Wright A. , Jun S. . ( 2010; ). Robust growth of Escherichia coli . . Curr Biol 20:, 1099–1103. [CrossRef] [PubMed]
    [Google Scholar]
  31. Williams G. C. . ( 1957; ). Pleiotropy, natural-selection, and the evolution of senescence. . Evolution 11:, 398–411. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.057240-0
Loading
/content/journal/micro/10.1099/mic.0.057240-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error