1887

Abstract

and are among the first bacterial species to colonize clean tooth surfaces. Both produce autoinducer-2 (AI-2): a family of inter-convertible cell–cell signal molecules synthesized by the LuxS enzyme. The overall aim of this work was to determine whether AI-2 alters interspecies interactions between DL1 and 34 within dual-species biofilms in flowing human saliva. Based upon AI-2 bioluminescence assays, DL1 produced more AI-2 activity than 34 in batch culture, and both were able to remove AI-2 activity from solution. In single-species, saliva-fed flowcell systems, 34 formed scant biofilms that were similar to the mutant. Conversely, DL1 formed confluent biofilms while the mutant formed architecturally distinct biofilms that possessed twofold greater biovolume than the wild-type. Supplementing saliva with 0.1–10 nM chemically synthesized AI-2 (csAI-2) restored the DL1 biofilm phenotype to that which was similar to the wild-type; above or below this concentration range, biofilms were architecturally similar to that formed by the mutant. In dual-species biofilms, DL1 was always more abundant than 34. Compared with dual-species, wild-type biofilms, the biovolume occupied by 34 was reduced by greater than sevenfold when neither species produced AI-2. The addition of 1 nM csAI-2 to the dual-species mutant biofilms re-established the biofilm phenotype to resemble that of the wild-type pair. Thus, this work demonstrates that AI-2 can alter the biofilm structure and composition of pioneering oral streptococcal biofilms. This may influence the subsequent succession of other species into oral biofilms and the ecology of dental plaque.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.057182-0
2012-07-01
2019-12-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/7/1783.html?itemId=/content/journal/micro/10.1099/mic.0.057182-0&mimeType=html&fmt=ahah

References

  1. Aas J. A. , Paster B. J. , Stokes L. N. , Olsen I. , Dewhirst F. E. . ( 2005; ). Defining the normal bacterial flora of the oral cavity. . J Clin Microbiol 43:, 5721–5732. [CrossRef] [PubMed]
    [Google Scholar]
  2. Abiko Y. , Sato T. , Mayanagi G. , Takahashi N. . ( 2010; ). Profiling of subgingival plaque biofilm microflora from periodontally healthy subjects and from subjects with periodontitis using quantitative real-time PCR. . J Periodontal Res 45:, 389–395. [CrossRef] [PubMed]
    [Google Scholar]
  3. Bassler B. L. , Wright M. , Silverman M. R. . ( 1994; ). Multiple signalling systems controlling expression of luminescence in Vibrio harveyi: sequence and function of genes encoding a second sensory pathway. . Mol Microbiol 13:, 273–286. [CrossRef] [PubMed]
    [Google Scholar]
  4. Bassler B. L. , Greenberg E. P. , Stevens A. M. . ( 1997; ). Cross-species induction of luminescence in the quorum-sensing bacterium Vibrio harveyi . . J Bacteriol 179:, 4043–4045.[PubMed]
    [Google Scholar]
  5. Blehert D. S. , Palmer R. J. Jr , Xavier J. B. , Almeida J. S. , Kolenbrander P. E. . ( 2003; ). Autoinducer-2 production by Streptococcus gordonii DL1 and the biofilm phenotype of a luxS mutant are influenced by nutritional conditions. . J Bacteriol 185:, 4851–4860. [CrossRef] [PubMed]
    [Google Scholar]
  6. Brown A. E. , Rogers J. D. , Haase E. M. , Zelasko P. M. , Scannapieco F. A. . ( 1999; ). Prevalence of the amylase-binding protein A gene (abpA) in oral streptococci. . J Clin Microbiol 37:, 4081–4085.[PubMed]
    [Google Scholar]
  7. Busscher H. J. , Van der Mei H. C. . ( 2000; ). Initial microbial adhesion events: mechanism and implications. . In Community Structure and Cooperation in Biofilms, pp. 25–36. Edited by Allison D. G. , Gilbert P. , Lappin-Scott H. M. , Wilson M. . . Cambridge:: Cambridge University Press;. [CrossRef]
    [Google Scholar]
  8. Busscher H. J. , Cowan M. M. , van der Mei H. C. . ( 1992; ). On the relative importance of specific and non-specific approaches to oral microbial adhesion. . FEMS Microbiol Rev 8:, 199–209.[PubMed] [CrossRef]
    [Google Scholar]
  9. Chen X. , Schauder S. , Potier N. , Van Dorsselaer A. , Pelczer I. , Bassler B. L. , Hughson F. M. . ( 2002; ). Structural identification of a bacterial quorum-sensing signal containing boron. . Nature 415:, 545–549. [CrossRef] [PubMed]
    [Google Scholar]
  10. Coulthurst S. J. , Whitehead N. A. , Welch M. , Salmond G. P. . ( 2002; ). Can boron get bacteria talking?. Trends Biochem Sci 27:, 217–219. [CrossRef] [PubMed]
    [Google Scholar]
  11. De Jong M. H. , Van der Hoeven J. S. . ( 1987; ). The growth of oral bacteria on saliva. . J Dent Res 66:, 498–505. [CrossRef] [PubMed]
    [Google Scholar]
  12. DeKeersmaecker S. C. , Vanderleyden J. . ( 2003; ). Constraints on detection of autoinducer-2 (AI-2) signalling molecules using Vibrio harveyi as a reporter. . Microbiology 149:, 1953–1956. [CrossRef] [PubMed]
    [Google Scholar]
  13. Diaz P. I. , Chalmers N. I. , Rickard A. H. , Kong C. , Milburn C. L. , Palmer R. J. Jr , Kolenbrander P. E. . ( 2006; ). Molecular characterization of subject-specific oral microflora during initial colonization of enamel. . Appl Environ Microbiol 72:, 2837–2848. [CrossRef] [PubMed]
    [Google Scholar]
  14. L. D. , Kolenbrander P. E. . ( 2000; ). Identification of saliva-regulated genes of Streptococcus gordonii DL1 by differential display using random arbitrarily primed PCR. . Infect Immun 68:, 4834–4837. [CrossRef] [PubMed]
    [Google Scholar]
  15. Duerre J. A. , Baker D. J. , Salisbury L. . ( 1971; ). Structure elucidation of a carbohydrate derived from S-ribosylhomocysteine by enzymatic cleavage. . Fed Proc 30:, 88.
    [Google Scholar]
  16. Egland P. G. , Palmer R. J. Jr , Kolenbrander P. E. . ( 2004; ). Interspecies communication in Streptococcus gordonii-Veillonella atypica biofilms: signaling in flow conditions requires juxtaposition. . Proc Natl Acad Sci U S A 101:, 16917–16922. [CrossRef] [PubMed]
    [Google Scholar]
  17. Frias J. , Olle E. , Alsina M. . ( 2001; ). Periodontal pathogens produce quorum-sensing signal molecules. . Infect Immun 69:, 3431–3434. [CrossRef] [PubMed]
    [Google Scholar]
  18. Heydorn A. , Nielsen A. T. , Hentzer M. , Sternberg C. , Givskov M. , Ersbøll B. K. , Molin S. . ( 2000; ). Quantification of biofilm structures by the novel computer program COMSTAT. . Microbiology 146:, 2395–2407.[PubMed]
    [Google Scholar]
  19. Hojo K. , Nagaoka S. , Ohshima T. , Maeda N. . ( 2009; ). Bacterial interactions in dental biofilm development. . J Dent Res 88:, 982–990. [CrossRef] [PubMed]
    [Google Scholar]
  20. Jakubovics N. S. , Kolenbrander P. E. . ( 2010; ). The road to ruin: the formation of disease-associated oral biofilms. . Oral Dis 16:, 729–739. [CrossRef] [PubMed]
    [Google Scholar]
  21. James D. , Shao H. , Lamont R. J. , Demuth D. R. . ( 2006; ). The Actinobacillus actinomycetemcomitans ribose binding protein RbsB interacts with cognate and heterologous autoinducer 2 signals. . Infect Immun 74:, 4021–4029. [CrossRef] [PubMed]
    [Google Scholar]
  22. Jayaraman A. , Wood T. K. . ( 2008; ). Bacterial quorum sensing: signals, circuits, and implications for biofilms and disease. . Annu Rev Biomed Eng 10:, 145–167. [CrossRef] [PubMed]
    [Google Scholar]
  23. Jenkinson H. F. . ( 1994; ). Adherence and accumulation of oral streptococci. . Trends Microbiol 2:, 209–212. [CrossRef] [PubMed]
    [Google Scholar]
  24. Kolenbrander P. E. . ( 1988; ). Intergeneric coaggregation among human oral bacteria and ecology of dental plaque. . Annu Rev Microbiol 42:, 627–656. [CrossRef] [PubMed]
    [Google Scholar]
  25. Kolenbrander P. E. . ( 1993; ). Coaggregation of human oral bacteria: potential role in the accretion of dental plaque. . J Appl Bacteriol 74: (Suppl.), 79S–86S. [CrossRef] [PubMed]
    [Google Scholar]
  26. Kolenbrander P. E. , Andersen R. N. , Moore L. V. . ( 1990; ). Intrageneric coaggregation among strains of human oral bacteria: potential role in primary colonization of the tooth surface. . Appl Environ Microbiol 56:, 3890–3894.[PubMed]
    [Google Scholar]
  27. Kolenbrander P. E. , Andersen R. N. , Blehert D. S. , Egland P. G. , Foster J. S. , Palmer R. J. Jr . ( 2002; ). Communication among oral bacteria. . Microbiol Mol Biol Rev 66:, 486–505. [CrossRef] [PubMed]
    [Google Scholar]
  28. Kolenbrander P. E. , Palmer R. J. Jr , Rickard A. H. , Jakubovics N. S. , Chalmers N. I. , Diaz P. I. . ( 2006; ). Bacterial interactions and successions during plaque development. . Periodontol 2000 42:, 47–79. [CrossRef] [PubMed]
    [Google Scholar]
  29. Kolenbrander P. E. , Palmer R. J. Jr , Periasamy S. , Jakubovics N. S. . ( 2010; ). Oral multispecies biofilm development and the key role of cell-cell distance. . Nat Rev Microbiol 8:, 471–480. [CrossRef] [PubMed]
    [Google Scholar]
  30. Kreth J. , Merritt J. , Shi W. , Qi F. . ( 2005; ). Competition and coexistence between Streptococcus mutans and Streptococcus sanguinis in the dental biofilm. . J Bacteriol 187:, 7193–7203. [CrossRef] [PubMed]
    [Google Scholar]
  31. Listgarten M. A. . ( 1999; ). Formation of dental plaque and other oral biofilms. . In Dental Plaque Revisited: Oral Biofilms in Health and Disease. Proceedings of a conference held at the Royal College of Physicians, pp. 187–210. Edited by Newman H. N. , Wilson M. . London, UK:: BioLine, Cardiff, Wales;.
    [Google Scholar]
  32. Marsh P. D. . ( 2004; ). Dental plaque as a microbial biofilm. . Caries Res 38:, 204–211. [CrossRef] [PubMed]
    [Google Scholar]
  33. McNab R. , Ford S. K. , El-Sabaeny A. , Barbieri B. , Cook G. S. , Lamont R. J. . ( 2003; ). LuxS-based signaling in Streptococcus gordonii: autoinducer 2 controls carbohydrate metabolism and biofilm formation with Porphyromonas gingivalis . . J Bacteriol 185:, 274–284. [CrossRef] [PubMed]
    [Google Scholar]
  34. Miller S. T. , Xavier K. B. , Campagna S. R. , Taga M. E. , Semmelhack M. F. , Bassler B. L. , Hughson F. M. . ( 2004; ). Salmonella typhimurium recognizes a chemically distinct form of the bacterial quorum-sensing signal AI-2. . Mol Cell 15:, 677–687. [CrossRef] [PubMed]
    [Google Scholar]
  35. Nobbs A. H. , Lamont R. J. , Jenkinson H. F. . ( 2009; ). Streptococcus adherence and colonization. . Microbiol Mol Biol Rev 73:, 407–450. [CrossRef] [PubMed]
    [Google Scholar]
  36. Nyvad B. , Kilian M. . ( 1987; ). Microbiology of the early colonization of human enamel and root surfaces in vivo. . Scand J Dent Res 95:, 369–380.[PubMed]
    [Google Scholar]
  37. Palmer R. J. Jr , Kazmerzak K. , Hansen M. C. , Kolenbrander P. E. . ( 2001; ). Mutualism versus independence: strategies of mixed-species oral biofilms in vitro using saliva as the sole nutrient source. . Infect Immun 69:, 5794–5804. [CrossRef] [PubMed]
    [Google Scholar]
  38. Paster B. J. , Olsen I. , Aas J. A. , Dewhirst F. E. . ( 2006; ). The breadth of bacterial diversity in the human periodontal pocket and other oral sites. . Periodontol 2000 42:, 80–87. [CrossRef] [PubMed]
    [Google Scholar]
  39. Periasamy S. , Kolenbrander P. E. . ( 2009; ). Mutualistic biofilm communities develop with Porphyromonas gingivalis and initial, early, and late colonizers of enamel. . J Bacteriol 191:, 6804–6811. [CrossRef] [PubMed]
    [Google Scholar]
  40. Redfield R. J. . ( 2002; ). Is quorum sensing a side effect of diffusion sensing?. Trends Microbiol 10:, 365–370. [CrossRef] [PubMed]
    [Google Scholar]
  41. Rickard A. H. , Gilbert P. , High N. J. , Kolenbrander P. E. , Handley P. S. . ( 2003; ). Bacterial coaggregation: an integral process in the development of multi-species biofilms. . Trends Microbiol 11:, 94–100. [CrossRef] [PubMed]
    [Google Scholar]
  42. Rickard A. H. , Palmer R. J. Jr , Blehert D. S. , Campagna S. R. , Semmelhack M. F. , Egland P. G. , Bassler B. L. , Kolenbrander P. E. . ( 2006; ). Autoinducer 2: a concentration-dependent signal for mutualistic bacterial biofilm growth. . Mol Microbiol 60:, 1446–1456. [CrossRef] [PubMed]
    [Google Scholar]
  43. Rickard A. H. , Bachrach G. , Davies D. G. . ( 2008a; ). Cell–cell communication in oral microbial communities. . In Molecular Oral Microbiology, pp. 87–109. Edited by Rogers A. H. . . London:: Horizon Press;.
    [Google Scholar]
  44. Rickard A. H. , Campagna S. R. , Kolenbrander P. E. . ( 2008b; ). Autoinducer-2 is produced in saliva-fed flow conditions relevant to natural oral biofilms. . J Appl Microbiol 105:, 2096–2103. [CrossRef] [PubMed]
    [Google Scholar]
  45. Rickard A. H. , Colacino K. R. , Manton K. M. , Morton R. I. , Pulcini E. , Pfeil J. , Rhoads D. , Wolcott R. D. , James G. . ( 2010; ). Production of cell-cell signalling molecules by bacteria isolated from human chronic wounds. . J Appl Microbiol 108:, 1509–1522. [CrossRef] [PubMed]
    [Google Scholar]
  46. Scannapieco F. A. , Solomon L. , Wadenya R. O. . ( 1994; ). Emergence in human dental plaque and host distribution of amylase-binding streptococci. . J Dent Res 73:, 1627–1635.[PubMed]
    [Google Scholar]
  47. Schaedler R. W. , Dubos R. , Costello R. . ( 1965; ). The development of the bacterial flora in the gastrointestinal tract of mice. . J Exp Med 122:, 59–66. [CrossRef] [PubMed]
    [Google Scholar]
  48. Semmelhack M. F. , Campagna S. R. , Hwa C. , Federle M. J. , Bassler B. L. . ( 2004; ). Boron binding with the quorum-sensing signal AI-2 and analogues. . Org Lett 6:, 2635–2637. [CrossRef] [PubMed]
    [Google Scholar]
  49. Semmelhack M. F. , Campagna S. R. , Federle M. J. , Bassler B. L. . ( 2005; ). An expeditious synthesis of DPD and boron binding studies. . Org Lett 7:, 569–572. [CrossRef] [PubMed]
    [Google Scholar]
  50. Shao H. , Demuth D. R. . ( 2010; ). Quorum sensing regulation of biofilm growth and gene expression by oral bacteria and periodontal pathogens. . Periodontol 2000 52:, 53–67. [CrossRef] [PubMed]
    [Google Scholar]
  51. Shao H. , Lamont R. J. , Demuth D. R. . ( 2007; ). Autoinducer 2 is required for biofilm growth of Aggregatibacter (Actinobacillus) actinomycetemcomitans . . Infect Immun 75:, 4211–4218. [CrossRef] [PubMed]
    [Google Scholar]
  52. Socransky S. S. , Manganiello A. D. , Propas D. , Oram V. , van Houte J. . ( 1977; ). Bacteriological studies of developing supragingival dental plaque. . J Periodontal Res 12:, 90–106. [CrossRef] [PubMed]
    [Google Scholar]
  53. Taga M. E. , Semmelhack J. L. , Bassler B. L. . ( 2001; ). The LuxS-dependent autoinducer AI-2 controls the expression of an ABC transporter that functions in AI-2 uptake in Salmonella typhimurium . . Mol Microbiol 42:, 777–793. [CrossRef] [PubMed]
    [Google Scholar]
  54. Taga M. E. , Miller S. T. , Bassler B. L. . ( 2003; ). Lsr-mediated transport and processing of AI-2 in Salmonella typhimurium . . Mol Microbiol 50:, 1411–1427. [CrossRef] [PubMed]
    [Google Scholar]
  55. van der Mei H. C. , Rustema-Abbing M. , de Vries J. , Busscher H. J. . ( 2008; ). Bond strengthening in oral bacterial adhesion to salivary conditioning films. . Appl Environ Microbiol 74:, 5511–5515. [CrossRef] [PubMed]
    [Google Scholar]
  56. Ward N. I. . ( 1993; ). Boron levels in human tissues and fluids. . In Trace Elements in Man and Animals – TEMA 8 Proceedings of the Eighth International Symposium on Trace Elements in Man and Animals, pp. 724–728. Edited by Meissner M. A. D. , Mills C. F. . Gersford, Germany:: Verlag Media Touristik;.
    [Google Scholar]
  57. Whitmore S. E. , Lamont R. J. . ( 2011; ). The pathogenic persona of community-associated oral streptococci. . Mol Microbiol 81:, 305–314. [CrossRef] [PubMed]
    [Google Scholar]
  58. Whittaker C. J. , Klier C. M. , Kolenbrander P. E. . ( 1996; ). Mechanisms of adhesion by oral bacteria. . Annu Rev Microbiol 50:, 513–552. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.057182-0
Loading
/content/journal/micro/10.1099/mic.0.057182-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error