1887

Abstract

is an important human pathogen in patients with cystic fibrosis (CF). Non-clinical reservoirs may play a role in the acquisition of infection, so it is important to evaluate the pathogenic potential of environmental isolates. In this study, we investigated the interactions of two environmental strains (Mex1 and MCII-168) with two bronchial epithelial cell lines, 16HBE14o and CFBE41o, which have a non-CF and a CF phenotype, respectively. The environmental strains showed a significantly lower level of invasion into both CF and non-CF cells in comparison with the clinical LMG16656 strain. Exposure of polarized CFBE41o or 16HBE14o cells to the environmental strains resulted in a significant reduction in transepithelial resistance (TER), comparable with that observed following exposure to the clinical strain. A different mechanism of tight junction disruption in CF versus non-CF epithelia was found. In the 16HBE41o cells, the environmental strains resulted in a drop in TER without any apparent effect on tight junction proteins such as zonula occludens-1 (ZO-1). In contrast, in CF cells, the amount of ZO-1 and its localization were clearly altered by the presence of both the environmental strains, comparable with the effect of LMG16656. This study demonstrates that even if the environmental strains are significantly less invasive than the clinical strain, they have an effect on epithelial integrity comparable with that of the clinical strain. Finally, the tight junction regulatory protein ZO-1 appears to be more susceptible to the presence of environmental strains in CF cells than in cells which express a functional cystic fibrosis transmembrane regulator (CFTR).

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.056986-0
2012-05-01
2021-10-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/5/1325.html?itemId=/content/journal/micro/10.1099/mic.0.056986-0&mimeType=html&fmt=ahah

References

  1. Baldwin A., Sokol P. A., Parkhill J., Mahenthiralingam E. ( 2004). The Burkholderia cepacia epidemic strain marker is part of a novel genomic island encoding both virulence and metabolism-associated genes in Burkholderia cenocepacia . Infect Immun 72:1537–1547
    [Google Scholar]
  2. Baldwin A., Mahenthiralingam E., Drevinek P., Vandamme P., Govan J. R. W., Waine D. J., LiPuma J. J., Chiarini L., Dalmastri C. & other authors ( 2007). Environmental Burkholderia cepacia complex isolates in human infections. Emerg Infect Dis 13:458–461 [View Article][PubMed]
    [Google Scholar]
  3. Becker K. A., Riethmüller J., Zhang Y., Gulbins E. ( 2010). The role of sphingolipids and ceramide in pulmonary inflammation in cystic fibrosis. Open Respir Med J 4:39–47[PubMed]
    [Google Scholar]
  4. Berg G., Eberl L., Hartmann A. ( 2005). The rhizosphere as a reservoir for opportunistic human pathogenic bacteria. Environ Microbiol 7:1673–1685 [View Article][PubMed]
    [Google Scholar]
  5. Bevivino A., Dalmastri C., Tabacchioni S., Chiarini L., Belli M. L., Piana S., Materazzo A., Vandamme P., Manno G. ( 2002). Burkholderia cepacia complex bacteria from clinical and environmental sources in Italy: genomovar status and distribution of traits related to virulence and transmissibility. J Clin Microbiol 40:846–851 [View Article][PubMed]
    [Google Scholar]
  6. Cao H., Baldini R. L., Rahme L. G. ( 2001). Common mechanisms for pathogens of plants and animals. Annu Rev Phytopathol 39:259–284 [View Article][PubMed]
    [Google Scholar]
  7. Chiarini L., Tabacchioni S., Bevivino A., Dalmastri C., Manno G., Ugolotti E., Piana S. ( 2002). B. cepacia genomovar III: is the subdivision in two recA groups related to different degree of virulence?. J Cyst Fibros 1 Suppl. 162
    [Google Scholar]
  8. Chiarini L., Cescutti P., Drigo L., Impallomeni G., Herasimenka Y., Bevivino A., Dalmastri C., Tabacchioni S., Manno G. & other authors ( 2004). Exopolysaccharides produced by Burkholderia cenocepacia recA lineages IIIA and IIIB. J Cyst Fibros 3:165–172 [View Article][PubMed]
    [Google Scholar]
  9. Chiarini L., Bevivino A., Dalmastri C., Tabacchioni S., Visca P. ( 2006). Burkholderia cepacia complex species: health hazards and biotechnological potential. Trends Microbiol 14:277–286 [View Article][PubMed]
    [Google Scholar]
  10. Cieri M. V., Mayer-Hamblett N., Griffith A., Burns J. L. ( 2002). Correlation between an in vitro invasion assay and a murine model of Burkholderia cepacia lung infection. Infect Immun 70:1081–1086 [View Article][PubMed]
    [Google Scholar]
  11. Coyne C. B., Vanhook M. K., Gambling T. M., Carson J. L., Boucher R. C., Johnson L. G. ( 2002). Regulation of airway tight junctions by proinflammatory cytokines. Mol Biol Cell 13:3218–3234 [View Article][PubMed]
    [Google Scholar]
  12. Cozens A. L., Yezzi M. J., Kunzelmann K., Ohrui T., Chin L., Eng K., Finkbeiner W. E., Widdicombe J. H., Gruenert D. C. ( 1994). CFTR expression and chloride secretion in polarized immortal human bronchial epithelial cells. Am J Respir Cell Mol Biol 10:38–47[PubMed] [CrossRef]
    [Google Scholar]
  13. Di Cello F., Bevivino A., Chiarini L., Fani R., Paffetti D., Tabacchioni S., Dalmastri C. ( 1997). Biodiversity of a Burkholderia cepacia population isolated from the maize rhizosphere at different plant growth stages. Appl Environ Microbiol 63:4485–4493[PubMed]
    [Google Scholar]
  14. Drevinek P., Mahenthiralingam E. ( 2010). Burkholderia cenocepacia in cystic fibrosis: epidemiology and molecular mechanisms of virulence. Clin Microbiol Infect 16:821–830 [View Article][PubMed]
    [Google Scholar]
  15. Duff C., Murphy P. G., Callaghan M., McClean S. ( 2006). Differences in invasion and translocation of Burkholderia cepacia complex species in polarised lung epithelial cells in vitro. Microb Pathog 41:183–192 [View Article][PubMed]
    [Google Scholar]
  16. Favia M., Guerra L., Fanelli T., Cardone R. A., Monterisi S., Di Sole F., Castellani S., Chen M., Seidler U. & other authors ( 2010). Na+/H+ exchanger regulatory factor 1 overexpression-dependent increase of cytoskeleton organization is fundamental in the rescue of F508del cystic fibrosis transmembrane conductance regulator in human airway CFBE41o− cells. Mol Biol Cell 21:73–86 [View Article][PubMed]
    [Google Scholar]
  17. Goncz K. K., Feeney L., Gruenert D. C. ( 1999). Differential sensitivity of normal and cystic fibrosis airway epithelial cells to epinephrine. Br J Pharmacol 128:227–233 [View Article][PubMed]
    [Google Scholar]
  18. Govan J. R., Deretic V. ( 1996). Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia . Microbiol Rev 60:539–574[PubMed]
    [Google Scholar]
  19. Gruenert D. C., Willems M., Cassiman J. J., Frizzell R. A. ( 2004). Established cell lines used in cystic fibrosis research. J Cyst Fibros 3:Suppl. 2191–196 [View Article][PubMed]
    [Google Scholar]
  20. Guerra L., Fanelli T., Favia M., Riccardi S. M., Busco G., Cardone R. A., Carrabino S., Weinman E. J., Reshkin S. J. & other authors ( 2005). Na+/H+ exchanger regulatory factor isoform 1 overexpression modulates cystic fibrosis transmembrane conductance regulator (CFTR) expression and activity in human airway 16HBE14o− cells and rescues ΔF508 CFTR functional expression in cystic fibrosis cells. J Biol Chem 280:40925–40933 [View Article][PubMed]
    [Google Scholar]
  21. Keig P. M., Ingham E., Vandamme P. A., Kerr K. G. ( 2002). Differential invasion of respiratory epithelial cells by members of the Burkholderia cepacia complex. Clin Microbiol Infect 8:47–49 [View Article][PubMed]
    [Google Scholar]
  22. Kim J. Y., Sajjan U. S., Krasan G. P., LiPuma J. J. ( 2005). Disruption of tight junctions during traversal of the respiratory epithelium by Burkholderia cenocepacia . Infect Immun 73:7107–7112 [View Article][PubMed]
    [Google Scholar]
  23. Kunzelmann K., Schwiebert E. M., Zeitlin P. L., Kuo W. L., Stanton B. A., Gruenert D. C. ( 1993). An immortalized cystic fibrosis tracheal epithelial cell line homozygous for the ΔF508 CFTR mutation. Am J Respir Cell Mol Biol 8:522–529[PubMed] [CrossRef]
    [Google Scholar]
  24. LeSimple P., Liao J., Robert R., Gruenert D. C., Hanrahan J. W. ( 2010). Cystic fibrosis transmembrane conductance regulator trafficking modulates the barrier function of airway epithelial cell monolayers. J Physiol 588:1195–1209 [View Article][PubMed]
    [Google Scholar]
  25. LiPuma J. J., Spilker T., Coenye T., Gonzalez C. F. ( 2002). An epidemic Burkholderia cepacia complex strain identified in soil. Lancet 359:2002–2003 [CrossRef]
    [Google Scholar]
  26. Loutet S. A., Valvano M. A. ( 2010). A decade of Burkholderia cenocepacia virulence determinant research. Infect Immun 78:4088–4100 [View Article][PubMed]
    [Google Scholar]
  27. Magalhães M., de Britto M. C., Vandamme P. ( 2002). Burkholderia cepacia genomovar III and Burkholderia vietnamiensis double infection in a cystic fibrosis child. J Cyst Fibros 1:292–294 [View Article][PubMed]
    [Google Scholar]
  28. Mahenthiralingam E., Vandamme P. ( 2005). Taxonomy and pathogenesis of the Burkholderia cepacia complex. Chron Respir Dis 2:209–217 [View Article][PubMed]
    [Google Scholar]
  29. Mahenthiralingam E., Coenye T., Chung J. W., Speert D. P., Govan J. R. W., Taylor P., Vandamme P. ( 2000). Diagnostically and experimentally useful panel of strains from the Burkholderia cepacia complex. J Clin Microbiol 38:910–913[PubMed]
    [Google Scholar]
  30. Mahenthiralingam E., Baldwin A., Vandamme P. ( 2002). Burkholderia cepacia complex infection in patients with cystic fibrosis. J Med Microbiol 51:533–538[PubMed]
    [Google Scholar]
  31. Mahenthiralingam E., Urban T. A., Goldberg J. B. ( 2005). The multifarious, multireplicon Burkholderia cepacia complex. Nat Rev Microbiol 3:144–156 [View Article][PubMed]
    [Google Scholar]
  32. Mahenthiralingam E., Baldwin A., Dowson C. G. ( 2008). Burkholderia cepacia complex bacteria: opportunistic pathogens with important natural biology. J Appl Microbiol 104:1539–1551 [View Article][PubMed]
    [Google Scholar]
  33. Martin D. W., Mohr C. D. ( 2000). Invasion and intracellular survival of Burkholderia cepacia . Infect Immun 68:24–29 [View Article][PubMed]
    [Google Scholar]
  34. McClean S., Callaghan M. ( 2009). Burkholderia cepacia complex: epithelial cell–pathogen confrontations and potential for therapeutic intervention. J Med Microbiol 58:1–12 [View Article][PubMed]
    [Google Scholar]
  35. Nilsson H. E., Dragomir A., Lazorova L., Johannesson M., Roomans G. M. ( 2010). CFTR and tight junctions in cultured bronchial epithelial cells. Exp Mol Pathol 88:118–127 [View Article][PubMed]
    [Google Scholar]
  36. Pirone L., Bragonzi A., Farcomeni A., Paroni M., Auriche C., Conese M., Chiarini L., Dalmastri C., Bevivino A., Ascenzioni F. ( 2008). Burkholderia cenocepacia strains isolated from cystic fibrosis patients are apparently more invasive and more virulent than rhizosphere strains. Environ Microbiol 10:2773–2784 [View Article][PubMed]
    [Google Scholar]
  37. Reik R., Spilker T., Lipuma J. J. ( 2005). Distribution of Burkholderia cepacia complex species among isolates recovered from persons with or without cystic fibrosis. J Clin Microbiol 43:2926–2928 [View Article][PubMed]
    [Google Scholar]
  38. Sajjan U., Keshavjee S., Forstner J. ( 2004). Responses of well-differentiated airway epithelial cell cultures from healthy donors and patients with cystic fibrosis to Burkholderia cenocepacia infection. Infect Immun 72:4188–4199 [View Article][PubMed]
    [Google Scholar]
  39. Schwab U., Leigh M., Ribeiro C., Yankaskas J., Burns K., Gilligan P., Sokol P., Boucher R. ( 2002). Patterns of epithelial cell invasion by different species of the Burkholderia cepacia complex in well-differentiated human airway epithelia. Infect Immun 70:4547–4555 [View Article][PubMed]
    [Google Scholar]
  40. Schwab U. E., Ribeiro C. M., Neubauer H., Boucher R. C. ( 2003). Role of actin filament network in Burkholderia multivorans invasion in well-differentiated human airway epithelia. Infect Immun 71:6607–6609 [View Article][PubMed]
    [Google Scholar]
  41. Scordilis G. E., Ree H., Lessie T. G. ( 1987). Identification of transposable elements which activate gene expression in Pseudomonas cepacia . J Bacteriol 169:8–13[PubMed]
    [Google Scholar]
  42. Speert D. P. ( 2001). Understanding Burkholderia cepacia: epidemiology, genomovars, and virulence. Infect Med 18:49–56
    [Google Scholar]
  43. Speert D. P., Henry D., Vandamme P., Corey M., Mahenthiralingam E. ( 2002). Epidemiology of Burkholderia cepacia complex in patients with cystic fibrosis, Canada. Emerg Infect Dis 8:181–187[PubMed] [CrossRef]
    [Google Scholar]
  44. Taylor J. B., Hogue L. A., LiPuma J. J., Walter M. J., Brody S. L., Cannon C. L. ( 2010). Entry of Burkholderia organisms into respiratory epithelium: CFTR, microfilament and microtubule dependence. J Cyst Fibros 9:36–43 [View Article][PubMed]
    [Google Scholar]
  45. Umeda K., Ikenouchi J., Katahira-Tayama S., Furuse K., Sasaki H., Nakayama M., Matsui T., Tsukita S., Furuse M., Tsukita S. ( 2006). ZO-1 and ZO-2 independently determine where claudins are polymerized in tight-junction strand formation. Cell 126:741–754 [View Article][PubMed]
    [Google Scholar]
  46. Valvano M. A. ( 2006). Infections by Burkholderia spp.: the psychodramatic life of an opportunistic pathogen. Future Microbiol 1:145–149 [View Article][PubMed]
    [Google Scholar]
  47. Vandamme P., Holmes B., Vancanneyt M., Coenye T., Hoste B., Coopman R., Revets H., Lauwers S., Gillis M. & other authors ( 1997). Occurrence of multiple genomovars of Burkholderia cepacia in cystic fibrosis patients and proposal of Burkholderia multivorans sp. nov.. Int J Syst Evol Microbiol 47:1188–1200 [View Article][PubMed]
    [Google Scholar]
  48. Vandamme P., Holmes B., Coenye T., Goris J., Mahenthiralingam E., LiPuma J. J., Govan J. R. ( 2003). Burkholderia cenocepacia sp. nov.–a new twist to an old story. Res Microbiol 154:91–96 [View Article][PubMed]
    [Google Scholar]
  49. Vanlaere E., LiPuma J. J., Baldwin A., Henry D., De Brandt E., Mahenthiralingam E., Speert D., Dowson C., Vandamme P. ( 2008). Burkholderia latens sp. nov., Burkholderia diffusa sp. nov., Burkholderia arboris sp. nov., Burkholderia seminalis sp. nov. and Burkholderia metallica sp. nov., novel species within the Burkholderia cepacia complex. Int J Syst Evol Microbiol 58:1580–1590 [View Article][PubMed]
    [Google Scholar]
  50. Vanlaere E., Baldwin A., Gevers D., Henry D., De Brandt E., LiPuma J. J., Mahenthiralingam E., Speert D. P., Dowson C., Vandamme P. ( 2009). Taxon K, a complex within the Burkholderia cepacia complex, comprises at least two novel species, Burkholderia contaminans sp. nov. and Burkholderia lata sp. nov.. Int J Syst Evol Microbiol 59:102–111 [View Article][PubMed]
    [Google Scholar]
  51. Vial L., Groleau M. C., Lamarche M. G., Filion G., Castonguay-Vanier J., Dekimpe V., Daigle F., Charette S. J., Déziel E. ( 2010). Phase variation has a role in Burkholderia ambifaria niche adaptation. ISME J 4:49–60 [View Article][PubMed]
    [Google Scholar]
  52. Vial L., Chapalain A., Groleau M. C., Déziel E. ( 2011). The various lifestyles of the Burkholderia cepacia complex species: a tribute to adaptation. Environ Microbiol 13:1–12 [View Article][PubMed]
    [Google Scholar]
  53. Zelazny A. M., Ding L., Elloumi H. Z., Brinster L. R., Benedetti F., Czapiga M., Ulrich R. L., Ballentine S. J., Goldberg J. B. & other authors ( 2009). Virulence and cellular interactions of Burkholderia multivorans in chronic granulomatous disease. Infect Immun 77:4337–4344 [View Article][PubMed]
    [Google Scholar]
  54. Zhang Y., Li X., Carpinteiro A., Gulbins E. ( 2008). Acid sphingomyelinase amplifies redox signaling in Pseudomonas aeruginosa-induced macrophage apoptosis. J Immunol 181:4247–4254[PubMed] [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.056986-0
Loading
/content/journal/micro/10.1099/mic.0.056986-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error