1887

Abstract

Reactive oxygen species (ROSs) affect several macromolecules and cellular components in eukaryotic and prokaryotic cells. In this work, the effect of various ROS-generating compounds on the membrane was studied. Membrane fatty acid profiles, oxidative damage levels and bacterial resistance to these toxicants were determined. Studies included wild-type cells as well as a strain exhibiting a modified monounsaturated fatty acid (MUFA) profile (accomplished by overexpressing the β-hydroxyacyl acyl carrier protein dehydratase-encoding gene, ). Levels of membrane MUFAs and oxidative damage markers decreased slightly upon toxicant exposure with a concomitant increase in cell resistance to these ROS-generating compounds. A direct relationship between MUFAs and lipid peroxidation was observed. The lower the MUFA the lower the peroxide levels, suggesting that MUFAs are targets for membrane lipid oxidation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.056903-0
2012-05-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/5/1279.html?itemId=/content/journal/micro/10.1099/mic.0.056903-0&mimeType=html&fmt=ahah

References

  1. Aoyagi K., Akiyama K., Tomida C., Gotoh M., Hirayama A., Takemura K., Ueda A., Nagase S., Koyama A., Narita M.. ( 1999;). Imaging of hydroperoxides in a rat glomerulus stimulated by puromycin aminonucleoside. . Kidney Int Suppl 71153–155. [CrossRef][PubMed]
    [Google Scholar]
  2. Bagchi D., Stohs S. J., Downs B. W., Bagchi M., Preuss H. G.. ( 2002;). Cytotoxicity and oxidative mechanisms of different forms of chromium. . Toxicology 180:, 5–22. [CrossRef][PubMed]
    [Google Scholar]
  3. Bielski B. H., Arudi R. L., Sutherland M. W.. ( 1983;). A study of the reactivity of HO2/O2 with unsaturated fatty acids. . J Biol Chem 258:, 4759–4761.[PubMed]
    [Google Scholar]
  4. Birge C. H., Vagelos P. R.. ( 1972;). Acyl carrier protein. XVII. Purification and properties of -hydroxyacyl acyl carrier protein dehydrase. . J Biol Chem 247:, 4930–4938.[PubMed]
    [Google Scholar]
  5. Borchman D., Yappert M. C.. ( 1998;). Age-related lipid oxidation in human lenses. . Invest Ophthalmol Vis Sci 39:, 1053–1058.[PubMed]
    [Google Scholar]
  6. Bus J. S., Gibson J. E.. ( 1984;). Paraquat: model for oxidant-initiated toxicity. . Environ Health Perspect 55:, 37–46. [CrossRef][PubMed]
    [Google Scholar]
  7. Cha M. K., Kim W. C., Lim C. J., Kim K., Kim I. H.. ( 2004;). Escherichia coli periplasmic thiol peroxidase acts as lipid hydroperoxide peroxidase and the principal antioxidative function during anaerobic growth. . J Biol Chem 279:, 8769–8778. [CrossRef][PubMed]
    [Google Scholar]
  8. Clark D. P., DeMendoza D., Polacco M. L., Cronan J. E. Jr. ( 1983;). Beta-hydroxydecanoyl thio ester dehydrase does not catalyze a rate-limiting step in Escherichia coli unsaturated fatty acid synthesis. . Biochemistry 22:, 5897–5902. [CrossRef][PubMed]
    [Google Scholar]
  9. Ercal N., Gurer-Orhan H., Aykin-Burns N.. ( 2001;). Toxic metals and oxidative stress part I: mechanisms involved in metal-induced oxidative damage. . Curr Top Med Chem 1:, 529–539. [CrossRef][PubMed]
    [Google Scholar]
  10. Esterbauer H., Schaur R. J., Zollner H.. ( 1991;). Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. . Free Radic Biol Med 11:, 81–128. [CrossRef][PubMed]
    [Google Scholar]
  11. Imlay J. A.. ( 2003;). Pathways of oxidative damage. . Annu Rev Microbiol 57:, 395–418. [CrossRef][PubMed]
    [Google Scholar]
  12. Johnson G. D.. ( 1953;). Correlation of color and constitution. I. 2, 4-dinitrophenylhydrazones. . J Am Chem Soc 75:, 2720–2723. [CrossRef]
    [Google Scholar]
  13. Loidl-Stahlhofen A., Kern W., Spiteller G.. ( 1995;). Gas chromatographic-electron impact mass spectrometric screening procedure for unknown hydroxyaldehydic lipid peroxidation products after pentafluorobenzyloxime derivatization. . J Chromatogr B Biomed Appl 673:, 1–14. [CrossRef][PubMed]
    [Google Scholar]
  14. Macomber L., Hausinger R. P.. ( 2011;). Mechanisms of nickel toxicity in microorganisms. . Metallomics 3:, 1153–1162. [CrossRef][PubMed]
    [Google Scholar]
  15. Maness P. C., Smolinski S., Blake D. M., Huang Z., Wolfrum E. J., Jacoby W. A.. ( 1999;). Bactericidal activity of photocatalytic TiO2 reaction: toward an understanding of its killing mechanism. . Appl Environ Microbiol 65:, 4094–4098.[PubMed]
    [Google Scholar]
  16. Masaki N., Kyle M. E., Farber J. L.. ( 1989;). tert-Butyl hydroperoxide kills cultured hepatocytes by peroxidizing membrane lipids. . Arch Biochem Biophys 269:, 390–399. [CrossRef][PubMed]
    [Google Scholar]
  17. Messner K. R., Imlay J. A.. ( 1999;). The identification of primary sites of superoxide and hydrogen peroxide formation in the aerobic respiratory chain and sulfite reductase complex of Escherichia coli. . J Biol Chem 274:, 10119–10128. [CrossRef][PubMed]
    [Google Scholar]
  18. Pérez J. M., Calderón I. L., Arenas F. A., Fuentes D. E., Pradenas G. A., Fuentes E. L., Sandoval J. M., Castro M. E., Elías A. O., Vásquez C. C.. ( 2007;). Bacterial toxicity of potassium tellurite: unveiling an ancient enigma. . PLoS ONE 2:, e211. [CrossRef][PubMed]
    [Google Scholar]
  19. Pérez J. M., Arenas F. A., Pradenas G. A., Sandoval J. M., Vásquez C. C.. ( 2008;). Escherichia coli YqhD exhibits aldehyde reductase activity and protects from the harmful effect of lipid peroxidation-derived aldehydes. . J Biol Chem 283:, 7346–7353. [CrossRef][PubMed]
    [Google Scholar]
  20. Rontani J. F.. ( 1998;). Photodegradation of unsaturated fatty acids in senescent cells of phytoplankton: photoproduct structural identification and mechanistic aspects. . J Photochem Photobiol Chem 114:, 37–44. [CrossRef]
    [Google Scholar]
  21. Royall J. A., Ischiropoulos H.. ( 1993;). Evaluation of 2′,7′-dichlorofluorescin and dihydrorhodamine 123 as fluorescent probes for intracellular H2O2 in cultured endothelial cells. . Arch Biochem Biophys 302:, 348–355. [CrossRef][PubMed]
    [Google Scholar]
  22. Semchyshyn H., Bagnyukova T., Storey K., Lushchak V.. ( 2005;). Hydrogen peroxide increases the activities of soxRS regulon enzymes and the levels of oxidized proteins and lipids in Escherichia coli. . Cell Biol Int 29:, 898–902. [CrossRef][PubMed]
    [Google Scholar]
  23. Stadtman E. R., Levine R. L.. ( 2000;). Protein oxidation. . Ann N Y Acad Sci 899:, 191–208. [CrossRef][PubMed]
    [Google Scholar]
  24. Vogel H. J., Bonner D. M.. ( 1956;). Acetylornithinase of Escherichia coli: partial purification and some properties. . J Biol Chem 218:, 97–106.[PubMed]
    [Google Scholar]
  25. Yan L. J.. ( 2009;). Analysis of oxidative modification of proteins. . Curr Protoc Protein Sci Chapter 14:, t14–, 4.[PubMed]
    [Google Scholar]
  26. Yoon S. J., Park J. E., Yang J. H., Park J. W.. ( 2002;). OxyR regulon controls lipid peroxidation-mediated oxidative stress in Escherichia coli. . J Biochem Mol Biol 35:, 297–301. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.056903-0
Loading
/content/journal/micro/10.1099/mic.0.056903-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error