1887

Abstract

The IcsA autotransporter protein is a major virulence factor of the human intracellular pathogen . IcsA is distributed at the poles in the outer membrane (OM) of and interacts with components of the host actin-polymerization machinery to facilitate intracellular actin-based motility and subsequent cell-to-cell spreading of the bacterium. We sought to characterize the biochemical properties of IcsA in the bacterial OM. Chemical cross-linking data suggested that IcsA exists in a complex in the OM. Furthermore, reciprocal co-immunoprecipitation of differentially epitope-tagged IcsA proteins indicated that IcsA is able to self-associate. The identification of IcsA linker-insertion mutants that were negatively dominant provided genetic evidence of IcsA–IcsA interactions. From these results, we propose a model whereby IcsA self-association facilitates efficient actin-based motility.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.056465-0
2012-07-01
2020-02-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/7/1874.html?itemId=/content/journal/micro/10.1099/mic.0.056465-0&mimeType=html&fmt=ahah

References

  1. Alto N. M., Weflen A. W., Rardin M. J., Yarar D., Lazar C. S., Tonikian R., Koller A., Taylor S. S., Boone C.. & other authors ( 2007;). The type III effector EspF coordinates membrane trafficking by the spatiotemporal activation of two eukaryotic signaling pathways. J Cell Biol178:1265–1278 [CrossRef][PubMed]
    [Google Scholar]
  2. Barnard T. J., Dautin N., Lukacik P., Bernstein H. D., Buchanan S. K.. ( 2007;). Autotransporter structure reveals intra-barrel cleavage followed by conformational changes. Nat Struct Mol Biol14:1214–1220 [CrossRef][PubMed]
    [Google Scholar]
  3. Bernardini M. L., Mounier J., d’Hauteville H., Coquis-Rondon M., Sansonetti P. J.. ( 1989;). Identification of icsA, a plasmid locus of Shigella flexneri that governs bacterial intra- and intercellular spread through interaction with F-actin. Proc Natl Acad Sci U S A86:3867–3871 [CrossRef][PubMed]
    [Google Scholar]
  4. Campellone K. G., Cheng H.-C., Robbins D., Siripala A. D., McGhie E. J., Hayward R. D., Welch M. D., Rosen M. K., Koronakis V., Leong J. M.. ( 2008;). Repetitive N-WASP-binding elements of the enterohemorrhagic Escherichia coli effector EspFU synergistically activate actin assembly. PLoS Pathog4:e1000191 [CrossRef][PubMed]
    [Google Scholar]
  5. Chapman-Smith A., Turner D. L., Cronan J. E. Jr, Morris T. W., Wallace J. C.. ( 1994;). Expression, biotinylation and purification of a biotin-domain peptide from the biotin carboxy carrier protein of Escherichia coli acetyl-CoA carboxylase. Biochem J302:881–887[PubMed]
    [Google Scholar]
  6. Cotter S. E., Surana N. K., St Geme J. W. III. ( 2005;). Trimeric autotransporters: a distinct subfamily of autotransporter proteins. Trends Microbiol13:199–205 [CrossRef][PubMed]
    [Google Scholar]
  7. Cull M. G., Schatz P. J.. ( 2000;). Biotinylation of proteins in vivo and in vitro using small peptide tags. Methods Enzymol326:430–440 [CrossRef][PubMed]
    [Google Scholar]
  8. Enninga J., Mounier J., Sansonetti P. J., Tran Van Nhieu G.. ( 2005;). Secretion of type III effectors into host cells in real time. Nat Methods2:959–965 [CrossRef][PubMed]
    [Google Scholar]
  9. Footer M. J., Lyo J. K., Theriot J. A.. ( 2008;). Close packing of Listeria monocytogenes ActA, a natively unfolded protein, enhances F-actin assembly without dimerization. J Biol Chem283:23852–23862 [CrossRef][PubMed]
    [Google Scholar]
  10. Gangwer K. A., Mushrush D. J., Stauff D. L., Spiller B., McClain M. S., Cover T. L., Lacy D. B.. ( 2007;). Crystal structure of the Helicobacter pylori vacuolating toxin p55 domain. Proc Natl Acad Sci U S A104:16293–16298 [CrossRef][PubMed]
    [Google Scholar]
  11. Goldberg M. B.. ( 2001;). Actin-based motility of intracellular microbial pathogens. Microbiol Mol Biol Rev65:595–626 [CrossRef][PubMed]
    [Google Scholar]
  12. Henderson I. R., Navarro-Garcia F., Desvaux M., Fernandez R. C., Ala’Aldeen D.. ( 2004;). Type V protein secretion pathway: the autotransporter story. Microbiol Mol Biol Rev68:692–744 [CrossRef][PubMed]
    [Google Scholar]
  13. Herskowitz I.. ( 1987;). Functional inactivation of genes by dominant negative mutations. Nature329:219–222 [CrossRef][PubMed]
    [Google Scholar]
  14. Hong M., Payne S. M.. ( 1997;). Effect of mutations in Shigella flexneri chromosomal and plasmid-encoded lipopolysaccharide genes on invasion and serum resistance. Mol Microbiol24:779–791 [CrossRef][PubMed]
    [Google Scholar]
  15. Hritonenko V., Kostakioti M., Stathopoulos C.. ( 2006;). Quaternary structure of a SPATE autotransporter protein. Mol Membr Biol23:466–474 [CrossRef][PubMed]
    [Google Scholar]
  16. Jain S., Goldberg M. B.. ( 2007;). Requirement for YaeT in the outer membrane assembly of autotransporter proteins. J Bacteriol189:5393–5398 [CrossRef][PubMed]
    [Google Scholar]
  17. Kim A. S., Kakalis L. T., Abdul-Manan N., Liu G. A., Rosen M. K.. ( 2000;). Autoinhibition and activation mechanisms of the Wiskott-Aldrich syndrome protein. Nature404:151–158 [CrossRef][PubMed]
    [Google Scholar]
  18. Klemm P., Vejborg R. M., Sherlock O.. ( 2006;). Self-associating autotransporters, SAATs: functional and structural similarities. Int J Med Microbiol296:187–195 [CrossRef][PubMed]
    [Google Scholar]
  19. Kotloff K. L., Noriega F., Losonsky G. A., Sztein M. B., Wasserman S. S., Nataro J. P., Levine M. M.. ( 1996;). Safety, immunogenicity, and transmissibility in humans of CVD 1203, a live oral Shigella flexneri 2a vaccine candidate attenuated by deletions in aroA and virG. Infect Immun64:4542–4548[PubMed]
    [Google Scholar]
  20. Kotloff K. L., Taylor D. N., Sztein M. B., Wasserman S. S., Losonsky G. A., Nataro J. P., Venkatesan M., Hartman A., Picking W. D.. & other authors ( 2002;). Phase I evaluation of ΔvirG Shigella sonnei live, attenuated, oral vaccine strain WRSS1 in healthy adults. Infect Immun70:2016–2021 [CrossRef][PubMed]
    [Google Scholar]
  21. Kovach M. E., Elzer P. H., Hill D. S., Robertson G. T., Farris M. A., Roop R. M. II, Peterson K. M.. ( 1995;). Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene166:175–176 [CrossRef][PubMed]
    [Google Scholar]
  22. Lett M. C., Sasakawa C., Okada N., Sakai T., Makino S., Yamada M., Komatsu K., Yoshikawa M.. ( 1989;). virG, a plasmid-coded virulence gene of Shigella flexneri: identification of the virG protein and determination of the complete coding sequence. J Bacteriol171:353–359[PubMed]
    [Google Scholar]
  23. Levine M. M., Kotloff K. L., Barry E. M., Pasetti M. F., Sztein M. B.. ( 2007;). Clinical trials of Shigella vaccines: two steps forward and one step back on a long, hard road. Nat Rev Microbiol5:540–553 [CrossRef][PubMed]
    [Google Scholar]
  24. Lugtenberg B., Meijers J., Peters R., van der Hoek P., van Alphen L.. ( 1975;). Electrophoretic resolution of the “major outer membrane protein” of Escherichia coli K12 into four bands. FEBS Lett58:254–258 [CrossRef][PubMed]
    [Google Scholar]
  25. Makino S., Sasakawa C., Kamata K., Kurata T., Yoshikawa M.. ( 1986;). A genetic determinant required for continuous reinfection of adjacent cells on large plasmid in S. flexneri 2a. Cell46:551–555 [CrossRef][PubMed]
    [Google Scholar]
  26. Marín E., Bodelón G., Fernández L. A.. ( 2010;). Comparative analysis of the biochemical and functional properties of C-terminal domains of autotransporters. J Bacteriol192:5588–5602 [CrossRef][PubMed]
    [Google Scholar]
  27. May K. L., Morona R.. ( 2008;). Mutagenesis of the Shigella flexneri autotransporter IcsA reveals novel functional regions involved in IcsA biogenesis and recruitment of host neural Wiscott-Aldrich syndrome protein. J Bacteriol190:4666–4676 [CrossRef][PubMed]
    [Google Scholar]
  28. Meng G., Spahich N., Kenjale R., Waksman G., St Geme J. W. III. ( 2011;). Crystal structure of the Haemophilus influenzae Hap adhesin reveals an intercellular oligomerization mechanism for bacterial aggregation. EMBO J30:3864–3874 [CrossRef][PubMed]
    [Google Scholar]
  29. Miki H., Takenawa T.. ( 2003;). Regulation of actin dynamics by WASP family proteins. J Biochem134:309–313 [CrossRef][PubMed]
    [Google Scholar]
  30. Morona R., Van Den Bosch L.. ( 2003a;). Lipopolysaccharide O antigen chains mask IcsA (VirG) in Shigella flexneri. FEMS Microbiol Lett221:173–180 [CrossRef][PubMed]
    [Google Scholar]
  31. Morona R., Van Den Bosch L.. ( 2003b;). Multicopy icsA is able to suppress the virulence defect caused by the wzz(SF) mutation in Shigella flexneri. FEMS Microbiol Lett221:213–219 [CrossRef][PubMed]
    [Google Scholar]
  32. Morona R., Daniels C., Van Den Bosch L.. ( 2003;). Genetic modulation of Shigella flexneri 2a lipopolysaccharide O antigen modal chain length reveals that it has been optimized for virulence. Microbiology149:925–939 [CrossRef][PubMed]
    [Google Scholar]
  33. Müller D., Benz I., Tapadar D., Buddenborg C., Greune L., Schmidt M. A.. ( 2005;). Arrangement of the translocator of the autotransporter adhesin involved in diffuse adherence on the bacterial surface. Infect Immun73:3851–3859 [CrossRef][PubMed]
    [Google Scholar]
  34. Oomen C. J., van Ulsen P., van Gelder P., Feijen M., Tommassen J., Gros P.. ( 2004;). Structure of the translocator domain of a bacterial autotransporter. EMBO J23:1257–1266 [CrossRef][PubMed]
    [Google Scholar]
  35. Padrick S. B., Rosen M. K.. ( 2010;). Physical mechanisms of signal integration by WASP family proteins. Annu Rev Biochem79:707–735 [CrossRef][PubMed]
    [Google Scholar]
  36. Padrick S. B., Cheng H.-C., Ismail A. M., Panchal S. C., Doolittle L. K., Kim S., Skehan B. M., Umetani J., Brautigam C. A.. & other authors ( 2008;). Hierarchical regulation of WASP/WAVE proteins. Mol Cell32:426–438 [CrossRef][PubMed]
    [Google Scholar]
  37. Pallen M. J., Chaudhuri R. R., Henderson I. R.. ( 2003;). Genomic analysis of secretion systems. Curr Opin Microbiol6:519–527 [CrossRef][PubMed]
    [Google Scholar]
  38. Peterson J. H., Tian P., Ieva R., Dautin N., Bernstein H. D.. ( 2010;). Secretion of a bacterial virulence factor is driven by the folding of a C-terminal segment. Proc Natl Acad Sci U S A107:17739–17744 [CrossRef][PubMed]
    [Google Scholar]
  39. Prossnitz E., Nikaido K., Ulbrich S. J., Ames G. F.. ( 1988;). Formaldehyde and photoactivatable cross-linking of the periplasmic binding protein to a membrane component of the histidine transport system of Salmonella typhimurium. J Biol Chem263:17917–17920[PubMed]
    [Google Scholar]
  40. Robbins J. R., Monack D., McCallum S. J., Vegas A., Pham E., Goldberg M. B., Theriot J. A.. ( 2001;). The making of a gradient: IcsA (VirG) polarity in Shigella flexneri. Mol Microbiol41:861–872 [CrossRef][PubMed]
    [Google Scholar]
  41. Sallee N. A., Rivera G. M., Dueber J. E., Vasilescu D., Mullins R. D., Mayer B. J., Lim W. A.. ( 2008;). The pathogen protein EspFU hijacks actin polymerization using mimicry and multivalency. Nature454:1005–1008 [CrossRef][PubMed]
    [Google Scholar]
  42. Sandlin R. C., Lampel K. A., Keasler S. P., Goldberg M. B., Stolzer A. L., Maurelli A. T.. ( 1995;). Avirulence of rough mutants of Shigella flexneri: requirement of O antigen for correct unipolar localization of IcsA in the bacterial outer membrane. Infect Immun63:229–237[PubMed]
    [Google Scholar]
  43. Sansonetti P. J., Arondel J., Fontaine A., d’Hauteville H., Bernardini M. L.. ( 1991;). OmpB (osmo-regulation) and icsA (cell-to-cell spread) mutants of Shigella flexneri: vaccine candidates and probes to study the pathogenesis of shigellosis. Vaccine9:416–422 [CrossRef][PubMed]
    [Google Scholar]
  44. Snapper S. B., Takeshima F., Antón I., Liu C. H., Thomas S. M., Nguyen D., Dudley D., Fraser H., Purich D.. & other authors ( 2001;). N-WASP deficiency reveals distinct pathways for cell surface projections and microbial actin-based motility. Nat Cell Biol3:897–904 [CrossRef][PubMed]
    [Google Scholar]
  45. Suzuki T., Saga S., Sasakawa C.. ( 1996;). Functional analysis of Shigella VirG domains essential for interaction with vinculin and actin-based motility. J Biol Chem271:21878–21885 [CrossRef][PubMed]
    [Google Scholar]
  46. Suzuki T., Miki H., Takenawa T., Sasakawa C.. ( 1998;). Neural Wiskott-Aldrich syndrome protein is implicated in the actin-based motility of Shigella flexneri. EMBO J17:2767–2776 [CrossRef][PubMed]
    [Google Scholar]
  47. Suzuki T., Mimuro H., Suetsugu S., Miki H., Takenawa T., Sasakawa C.. ( 2002;). Neural Wiskott-Aldrich syndrome protein (N-WASP) is the specific ligand for Shigella VirG among the WASP family and determines the host cell type allowing actin-based spreading. Cell Microbiol4:223–233 [CrossRef][PubMed]
    [Google Scholar]
  48. Swanson K. A., Taylor L. D., Frank S. D., Sturdevant G. L., Fischer E. R., Carlson J. H., Whitmire W. M., Caldwell H. D.. ( 2009;). Chlamydia trachomatis polymorphic membrane protein D is an oligomeric autotransporter with a higher-order structure. Infect Immun77:508–516 [CrossRef][PubMed]
    [Google Scholar]
  49. Thanabalu T., Koronakis E., Hughes C., Koronakis V.. ( 1998;). Substrate-induced assembly of a contiguous channel for protein export from E.coli: reversible bridging of an inner-membrane translocase to an outer membrane exit pore. EMBO J17:6487–6496 [CrossRef][PubMed]
    [Google Scholar]
  50. Touzé T., Hayward R. D., Eswaran J., Leong J. M., Koronakis V.. ( 2004;). Self-association of EPEC intimin mediated by the β-barrel-containing anchor domain: a role in clustering of the Tir receptor. Mol Microbiol51:73–87 [CrossRef][PubMed]
    [Google Scholar]
  51. Van Den Bosch L., Morona R.. ( 2003;). The actin-based motility defect of a Shigella flexneri rmlD rough LPS mutant is not due to loss of IcsA polarity. Microb Pathog35:11–18 [CrossRef][PubMed]
    [Google Scholar]
  52. Van Den Bosch L., Manning P. A., Morona R.. ( 1997;). Regulation of O-antigen chain length is required for Shigella flexneri virulence. Mol Microbiol23:765–775 [CrossRef][PubMed]
    [Google Scholar]
  53. Veiga E., Sugawara E., Nikaido H., de Lorenzo V., Fernández L. A.. ( 2002;). Export of autotransported proteins proceeds through an oligomeric ring shaped by C-terminal domains. EMBO J21:2122–2131 [CrossRef][PubMed]
    [Google Scholar]
  54. Xicohtencatl-Cortes J., Saldaña Z., Deng W., Castañeda E., Freer E., Tarr P. I., Finlay B. B., Puente J. L., Girón J. A.. ( 2010;). Bacterial macroscopic rope-like fibers with cytopathic and adhesive properties. J Biol Chem285:32336–32342 [CrossRef][PubMed]
    [Google Scholar]
  55. Yarar D., To W., Abo A., Welch M. D.. ( 1999;). The Wiskott-Aldrich syndrome protein directs actin-based motility by stimulating actin nucleation with the Arp2/3 complex. Curr Biol9:555–558 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.056465-0
Loading
/content/journal/micro/10.1099/mic.0.056465-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error