1887

Abstract

The IcsA autotransporter protein is a major virulence factor of the human intracellular pathogen . IcsA is distributed at the poles in the outer membrane (OM) of and interacts with components of the host actin-polymerization machinery to facilitate intracellular actin-based motility and subsequent cell-to-cell spreading of the bacterium. We sought to characterize the biochemical properties of IcsA in the bacterial OM. Chemical cross-linking data suggested that IcsA exists in a complex in the OM. Furthermore, reciprocal co-immunoprecipitation of differentially epitope-tagged IcsA proteins indicated that IcsA is able to self-associate. The identification of IcsA linker-insertion mutants that were negatively dominant provided genetic evidence of IcsA–IcsA interactions. From these results, we propose a model whereby IcsA self-association facilitates efficient actin-based motility.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.056465-0
2012-07-01
2022-01-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/7/1874.html?itemId=/content/journal/micro/10.1099/mic.0.056465-0&mimeType=html&fmt=ahah

References

  1. Alto N. M., Weflen A. W., Rardin M. J., Yarar D., Lazar C. S., Tonikian R., Koller A., Taylor S. S., Boone C. & other authors ( 2007). The type III effector EspF coordinates membrane trafficking by the spatiotemporal activation of two eukaryotic signaling pathways. J Cell Biol 178:1265–1278 [View Article][PubMed]
    [Google Scholar]
  2. Barnard T. J., Dautin N., Lukacik P., Bernstein H. D., Buchanan S. K. ( 2007). Autotransporter structure reveals intra-barrel cleavage followed by conformational changes. Nat Struct Mol Biol 14:1214–1220 [View Article][PubMed]
    [Google Scholar]
  3. Bernardini M. L., Mounier J., d’Hauteville H., Coquis-Rondon M., Sansonetti P. J. ( 1989). Identification of icsA, a plasmid locus of Shigella flexneri that governs bacterial intra- and intercellular spread through interaction with F-actin. Proc Natl Acad Sci U S A 86:3867–3871 [View Article][PubMed]
    [Google Scholar]
  4. Campellone K. G., Cheng H.-C., Robbins D., Siripala A. D., McGhie E. J., Hayward R. D., Welch M. D., Rosen M. K., Koronakis V., Leong J. M. ( 2008). Repetitive N-WASP-binding elements of the enterohemorrhagic Escherichia coli effector EspFU synergistically activate actin assembly. PLoS Pathog 4:e1000191 [View Article][PubMed]
    [Google Scholar]
  5. Chapman-Smith A., Turner D. L., Cronan J. E. Jr, Morris T. W., Wallace J. C. ( 1994). Expression, biotinylation and purification of a biotin-domain peptide from the biotin carboxy carrier protein of Escherichia coli acetyl-CoA carboxylase. Biochem J 302:881–887[PubMed]
    [Google Scholar]
  6. Cotter S. E., Surana N. K., St Geme J. W. III ( 2005). Trimeric autotransporters: a distinct subfamily of autotransporter proteins. Trends Microbiol 13:199–205 [View Article][PubMed]
    [Google Scholar]
  7. Cull M. G., Schatz P. J. ( 2000). Biotinylation of proteins in vivo and in vitro using small peptide tags. Methods Enzymol 326:430–440 [View Article][PubMed]
    [Google Scholar]
  8. Enninga J., Mounier J., Sansonetti P. J., Tran Van Nhieu G. ( 2005). Secretion of type III effectors into host cells in real time. Nat Methods 2:959–965 [View Article][PubMed]
    [Google Scholar]
  9. Footer M. J., Lyo J. K., Theriot J. A. ( 2008). Close packing of Listeria monocytogenes ActA, a natively unfolded protein, enhances F-actin assembly without dimerization. J Biol Chem 283:23852–23862 [View Article][PubMed]
    [Google Scholar]
  10. Gangwer K. A., Mushrush D. J., Stauff D. L., Spiller B., McClain M. S., Cover T. L., Lacy D. B. ( 2007). Crystal structure of the Helicobacter pylori vacuolating toxin p55 domain. Proc Natl Acad Sci U S A 104:16293–16298 [View Article][PubMed]
    [Google Scholar]
  11. Goldberg M. B. ( 2001). Actin-based motility of intracellular microbial pathogens. Microbiol Mol Biol Rev 65:595–626 [View Article][PubMed]
    [Google Scholar]
  12. Henderson I. R., Navarro-Garcia F., Desvaux M., Fernandez R. C., Ala’Aldeen D. ( 2004). Type V protein secretion pathway: the autotransporter story. Microbiol Mol Biol Rev 68:692–744 [View Article][PubMed]
    [Google Scholar]
  13. Herskowitz I. ( 1987). Functional inactivation of genes by dominant negative mutations. Nature 329:219–222 [View Article][PubMed]
    [Google Scholar]
  14. Hong M., Payne S. M. ( 1997). Effect of mutations in Shigella flexneri chromosomal and plasmid-encoded lipopolysaccharide genes on invasion and serum resistance. Mol Microbiol 24:779–791 [View Article][PubMed]
    [Google Scholar]
  15. Hritonenko V., Kostakioti M., Stathopoulos C. ( 2006). Quaternary structure of a SPATE autotransporter protein. Mol Membr Biol 23:466–474 [View Article][PubMed]
    [Google Scholar]
  16. Jain S., Goldberg M. B. ( 2007). Requirement for YaeT in the outer membrane assembly of autotransporter proteins. J Bacteriol 189:5393–5398 [View Article][PubMed]
    [Google Scholar]
  17. Kim A. S., Kakalis L. T., Abdul-Manan N., Liu G. A., Rosen M. K. ( 2000). Autoinhibition and activation mechanisms of the Wiskott-Aldrich syndrome protein. Nature 404:151–158 [View Article][PubMed]
    [Google Scholar]
  18. Klemm P., Vejborg R. M., Sherlock O. ( 2006). Self-associating autotransporters, SAATs: functional and structural similarities. Int J Med Microbiol 296:187–195 [View Article][PubMed]
    [Google Scholar]
  19. Kotloff K. L., Noriega F., Losonsky G. A., Sztein M. B., Wasserman S. S., Nataro J. P., Levine M. M. ( 1996). Safety, immunogenicity, and transmissibility in humans of CVD 1203, a live oral Shigella flexneri 2a vaccine candidate attenuated by deletions in aroA and virG . Infect Immun 64:4542–4548[PubMed]
    [Google Scholar]
  20. Kotloff K. L., Taylor D. N., Sztein M. B., Wasserman S. S., Losonsky G. A., Nataro J. P., Venkatesan M., Hartman A., Picking W. D. & other authors ( 2002). Phase I evaluation of ΔvirG Shigella sonnei live, attenuated, oral vaccine strain WRSS1 in healthy adults. Infect Immun 70:2016–2021 [View Article][PubMed]
    [Google Scholar]
  21. Kovach M. E., Elzer P. H., Hill D. S., Robertson G. T., Farris M. A., Roop R. M. II, Peterson K. M. ( 1995). Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166:175–176 [View Article][PubMed]
    [Google Scholar]
  22. Lett M. C., Sasakawa C., Okada N., Sakai T., Makino S., Yamada M., Komatsu K., Yoshikawa M. ( 1989). virG, a plasmid-coded virulence gene of Shigella flexneri: identification of the virG protein and determination of the complete coding sequence. J Bacteriol 171:353–359[PubMed]
    [Google Scholar]
  23. Levine M. M., Kotloff K. L., Barry E. M., Pasetti M. F., Sztein M. B. ( 2007). Clinical trials of Shigella vaccines: two steps forward and one step back on a long, hard road. Nat Rev Microbiol 5:540–553 [View Article][PubMed]
    [Google Scholar]
  24. Lugtenberg B., Meijers J., Peters R., van der Hoek P., van Alphen L. ( 1975). Electrophoretic resolution of the “major outer membrane protein” of Escherichia coli K12 into four bands. FEBS Lett 58:254–258 [View Article][PubMed]
    [Google Scholar]
  25. Makino S., Sasakawa C., Kamata K., Kurata T., Yoshikawa M. ( 1986). A genetic determinant required for continuous reinfection of adjacent cells on large plasmid in S. flexneri 2a. Cell 46:551–555 [View Article][PubMed]
    [Google Scholar]
  26. Marín E., Bodelón G., Fernández L. A. ( 2010). Comparative analysis of the biochemical and functional properties of C-terminal domains of autotransporters. J Bacteriol 192:5588–5602 [View Article][PubMed]
    [Google Scholar]
  27. May K. L., Morona R. ( 2008). Mutagenesis of the Shigella flexneri autotransporter IcsA reveals novel functional regions involved in IcsA biogenesis and recruitment of host neural Wiscott-Aldrich syndrome protein. J Bacteriol 190:4666–4676 [View Article][PubMed]
    [Google Scholar]
  28. Meng G., Spahich N., Kenjale R., Waksman G., St Geme J. W. III ( 2011). Crystal structure of the Haemophilus influenzae Hap adhesin reveals an intercellular oligomerization mechanism for bacterial aggregation. EMBO J 30:3864–3874 [View Article][PubMed]
    [Google Scholar]
  29. Miki H., Takenawa T. ( 2003). Regulation of actin dynamics by WASP family proteins. J Biochem 134:309–313 [View Article][PubMed]
    [Google Scholar]
  30. Morona R., Van Den Bosch L. ( 2003a). Lipopolysaccharide O antigen chains mask IcsA (VirG) in Shigella flexneri . FEMS Microbiol Lett 221:173–180 [View Article][PubMed]
    [Google Scholar]
  31. Morona R., Van Den Bosch L. ( 2003b). Multicopy icsA is able to suppress the virulence defect caused by the wzz(SF) mutation in Shigella flexneri . FEMS Microbiol Lett 221:213–219 [View Article][PubMed]
    [Google Scholar]
  32. Morona R., Daniels C., Van Den Bosch L. ( 2003). Genetic modulation of Shigella flexneri 2a lipopolysaccharide O antigen modal chain length reveals that it has been optimized for virulence. Microbiology 149:925–939 [View Article][PubMed]
    [Google Scholar]
  33. Müller D., Benz I., Tapadar D., Buddenborg C., Greune L., Schmidt M. A. ( 2005). Arrangement of the translocator of the autotransporter adhesin involved in diffuse adherence on the bacterial surface. Infect Immun 73:3851–3859 [View Article][PubMed]
    [Google Scholar]
  34. Oomen C. J., van Ulsen P., van Gelder P., Feijen M., Tommassen J., Gros P. ( 2004). Structure of the translocator domain of a bacterial autotransporter. EMBO J 23:1257–1266 [View Article][PubMed]
    [Google Scholar]
  35. Padrick S. B., Rosen M. K. ( 2010). Physical mechanisms of signal integration by WASP family proteins. Annu Rev Biochem 79:707–735 [View Article][PubMed]
    [Google Scholar]
  36. Padrick S. B., Cheng H.-C., Ismail A. M., Panchal S. C., Doolittle L. K., Kim S., Skehan B. M., Umetani J., Brautigam C. A. & other authors ( 2008). Hierarchical regulation of WASP/WAVE proteins. Mol Cell 32:426–438 [View Article][PubMed]
    [Google Scholar]
  37. Pallen M. J., Chaudhuri R. R., Henderson I. R. ( 2003). Genomic analysis of secretion systems. Curr Opin Microbiol 6:519–527 [View Article][PubMed]
    [Google Scholar]
  38. Peterson J. H., Tian P., Ieva R., Dautin N., Bernstein H. D. ( 2010). Secretion of a bacterial virulence factor is driven by the folding of a C-terminal segment. Proc Natl Acad Sci U S A 107:17739–17744 [View Article][PubMed]
    [Google Scholar]
  39. Prossnitz E., Nikaido K., Ulbrich S. J., Ames G. F. ( 1988). Formaldehyde and photoactivatable cross-linking of the periplasmic binding protein to a membrane component of the histidine transport system of Salmonella typhimurium . J Biol Chem 263:17917–17920[PubMed]
    [Google Scholar]
  40. Robbins J. R., Monack D., McCallum S. J., Vegas A., Pham E., Goldberg M. B., Theriot J. A. ( 2001). The making of a gradient: IcsA (VirG) polarity in Shigella flexneri . Mol Microbiol 41:861–872 [View Article][PubMed]
    [Google Scholar]
  41. Sallee N. A., Rivera G. M., Dueber J. E., Vasilescu D., Mullins R. D., Mayer B. J., Lim W. A. ( 2008). The pathogen protein EspFU hijacks actin polymerization using mimicry and multivalency. Nature 454:1005–1008 [View Article][PubMed]
    [Google Scholar]
  42. Sandlin R. C., Lampel K. A., Keasler S. P., Goldberg M. B., Stolzer A. L., Maurelli A. T. ( 1995). Avirulence of rough mutants of Shigella flexneri: requirement of O antigen for correct unipolar localization of IcsA in the bacterial outer membrane. Infect Immun 63:229–237[PubMed]
    [Google Scholar]
  43. Sansonetti P. J., Arondel J., Fontaine A., d’Hauteville H., Bernardini M. L. ( 1991). OmpB (osmo-regulation) and icsA (cell-to-cell spread) mutants of Shigella flexneri: vaccine candidates and probes to study the pathogenesis of shigellosis. Vaccine 9:416–422 [View Article][PubMed]
    [Google Scholar]
  44. Snapper S. B., Takeshima F., Antón I., Liu C. H., Thomas S. M., Nguyen D., Dudley D., Fraser H., Purich D. & other authors ( 2001). N-WASP deficiency reveals distinct pathways for cell surface projections and microbial actin-based motility. Nat Cell Biol 3:897–904 [View Article][PubMed]
    [Google Scholar]
  45. Suzuki T., Saga S., Sasakawa C. ( 1996). Functional analysis of Shigella VirG domains essential for interaction with vinculin and actin-based motility. J Biol Chem 271:21878–21885 [View Article][PubMed]
    [Google Scholar]
  46. Suzuki T., Miki H., Takenawa T., Sasakawa C. ( 1998). Neural Wiskott-Aldrich syndrome protein is implicated in the actin-based motility of Shigella flexneri . EMBO J 17:2767–2776 [View Article][PubMed]
    [Google Scholar]
  47. Suzuki T., Mimuro H., Suetsugu S., Miki H., Takenawa T., Sasakawa C. ( 2002). Neural Wiskott-Aldrich syndrome protein (N-WASP) is the specific ligand for Shigella VirG among the WASP family and determines the host cell type allowing actin-based spreading. Cell Microbiol 4:223–233 [View Article][PubMed]
    [Google Scholar]
  48. Swanson K. A., Taylor L. D., Frank S. D., Sturdevant G. L., Fischer E. R., Carlson J. H., Whitmire W. M., Caldwell H. D. ( 2009). Chlamydia trachomatis polymorphic membrane protein D is an oligomeric autotransporter with a higher-order structure. Infect Immun 77:508–516 [View Article][PubMed]
    [Google Scholar]
  49. Thanabalu T., Koronakis E., Hughes C., Koronakis V. ( 1998). Substrate-induced assembly of a contiguous channel for protein export from E.coli: reversible bridging of an inner-membrane translocase to an outer membrane exit pore. EMBO J 17:6487–6496 [View Article][PubMed]
    [Google Scholar]
  50. Touzé T., Hayward R. D., Eswaran J., Leong J. M., Koronakis V. ( 2004). Self-association of EPEC intimin mediated by the β-barrel-containing anchor domain: a role in clustering of the Tir receptor. Mol Microbiol 51:73–87 [View Article][PubMed]
    [Google Scholar]
  51. Van Den Bosch L., Morona R. ( 2003). The actin-based motility defect of a Shigella flexneri rmlD rough LPS mutant is not due to loss of IcsA polarity. Microb Pathog 35:11–18 [View Article][PubMed]
    [Google Scholar]
  52. Van Den Bosch L., Manning P. A., Morona R. ( 1997). Regulation of O-antigen chain length is required for Shigella flexneri virulence. Mol Microbiol 23:765–775 [View Article][PubMed]
    [Google Scholar]
  53. Veiga E., Sugawara E., Nikaido H., de Lorenzo V., Fernández L. A. ( 2002). Export of autotransported proteins proceeds through an oligomeric ring shaped by C-terminal domains. EMBO J 21:2122–2131 [View Article][PubMed]
    [Google Scholar]
  54. Xicohtencatl-Cortes J., Saldaña Z., Deng W., Castañeda E., Freer E., Tarr P. I., Finlay B. B., Puente J. L., Girón J. A. ( 2010). Bacterial macroscopic rope-like fibers with cytopathic and adhesive properties. J Biol Chem 285:32336–32342 [View Article][PubMed]
    [Google Scholar]
  55. Yarar D., To W., Abo A., Welch M. D. ( 1999). The Wiskott-Aldrich syndrome protein directs actin-based motility by stimulating actin nucleation with the Arp2/3 complex. Curr Biol 9:555–558 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.056465-0
Loading
/content/journal/micro/10.1099/mic.0.056465-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error