1887

Abstract

The interplay between calcium metabolism and glycosylation in yeast is largely unknown. In order to clarify this relationship, the effect of a mutation in the gene, encoding the Golgi α-1,6-mannosyltransferase, on calcium homeostasis was studied in the yeast . In particular, the role of the gene, encoding one of the components of the plasma membrane calcium channel (Cch1-Mid1), was investigated. Almost complete suppression of the phenotypes occurring in the mutant strain, ranging from oxidative stress to cell wall alteration, was observed by increased dosage of In addition, the -glycosylation mutant showed increased calcium accumulation and decreased transcription of and . Moreover, the calcium alterations included an increased expressional profile for the gene, encoding the vacuolar calcium ion pump. Furthermore, perturbation of endoplasmic reticulum (ER) homeostasis was observed in cells. Similarly, down-modulation of calcium signalling genes as well as altered mitochondrial functionality were induced in wild-type cells after treatment with DTT. However, no mitochondrial alteration occurred in the treated cells when was overexpressed. Our results suggest that the ER stress taking place in 1 cells appears to be the primary cause of the down-modulation and its resulting effects on the expression of calcium homeostasis genes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.056283-0
2012-07-01
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/7/1694.html?itemId=/content/journal/micro/10.1099/mic.0.056283-0&mimeType=html&fmt=ahah

References

  1. Bates S., Hughes H. B., Munro C. A., Thomas W. P., MacCallum D. M., Bertram G., Atrih A., Ferguson M. A., Brown A. J. et al. ( 2006;). Outer chain N-glycans are required for cell wall integrity and virulence of Candida albicans. J Biol Chem281:90–98 [CrossRef][PubMed]
    [Google Scholar]
  2. Batiza A. F., Schulz T., Masson P. H.. ( 1996;). Yeast respond to hypotonic shock with a calcium pulse. J Biol Chem271:23357–23362 [CrossRef][PubMed]
    [Google Scholar]
  3. Berridge M. J., Bootman M. D., Roderick H. L.. ( 2003;). Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol4:517–529 [CrossRef][PubMed]
    [Google Scholar]
  4. Bonilla M., Nastase K. K., Cunningham K. W.. ( 2002;). Essential role of calcineurin in response to endoplasmic reticulum stress. EMBO J21:2343–2353 [CrossRef][PubMed]
    [Google Scholar]
  5. Chen X. J.. ( 1996;). Low- and high-copy-number shuttle vectors for replication in the budding yeast Kluyveromyces lactis. Gene172:131–136 [CrossRef][PubMed]
    [Google Scholar]
  6. Clapham D. E.. ( 1995;). Calcium signaling. Cell80:259–268 [CrossRef][PubMed]
    [Google Scholar]
  7. Conti L. R., Radeke C. M., Vandenberg C. A.. ( 2002;). Membrane targeting of ATP-sensitive potassium channel. Effects of glycosylation on surface expression. J Biol Chem277:25416–25422 [CrossRef][PubMed]
    [Google Scholar]
  8. Courchesne W. E., Ozturk S.. ( 2003;). Amiodarone induces a caffeine-inhibited, MID1-depedent rise in free cytoplasmic calcium in Saccharomyces cerevisiae. Mol Microbiol47:223–234 [CrossRef][PubMed]
    [Google Scholar]
  9. Cox J. S., Shamu C. E., Walter P.. ( 1993;). Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase. Cell73:1197–1206 [CrossRef][PubMed]
    [Google Scholar]
  10. Cui J., Kaandorp J. A., Sloot P. M., Lloyd C. M., Filatov M. V.. ( 2009;). Calcium homeostasis and signaling in yeast cells and cardiac myocytes. FEMS Yeast Res9:1137–1147 [CrossRef][PubMed]
    [Google Scholar]
  11. Cunningham K. W.. ( 2011;). Acidic calcium stores of Saccharomyces cerevisiae. Cell Calcium50:129–138 [CrossRef][PubMed]
    [Google Scholar]
  12. Dunn T., Gable K., Beeler T.. ( 1994;). Regulation of cellular Ca2+ by yeast vacuoles. J Biol Chem269:7273–7278[PubMed]
    [Google Scholar]
  13. Dupres V., Heinisch J. J., Dufrêne Y. F.. ( 2011;). Atomic force microscopy demonstrates that disulfide bridges are required for clustering of the yeast cell wall integrity sensor Wsc1. Langmuir27:15129–15134 [CrossRef][PubMed]
    [Google Scholar]
  14. Eilam Y., Lavi H., Grossowicz N.. ( 1985;). Mechanism of stimulation of Ca2+ uptake by miconazole and ethidium bromide in yeasts: role of vacuoles in Ca2+ detoxification. Microbios44:51–66[PubMed]
    [Google Scholar]
  15. Graf A., Gasser B., Dragosits M., Sauer M., Leparc G. G., Tüchler T., Kreil D. P., Mattanovich D.. ( 2008;). Novel insights into the unfolded protein response using Pichia pastoris specific DNA microarrays. BMC Genomics9:390 [CrossRef][PubMed]
    [Google Scholar]
  16. Groppi S., Belotti F., Brandão R. L., Martegani E., Tisi R.. ( 2011;). Glucose-induced calcium influx in budding yeast involves a novel calcium transport system and can activate calcineurin. Cell Calcium49:376–386 [CrossRef][PubMed]
    [Google Scholar]
  17. Guthrie C., Fink G. R.. ( 2002;). Guide to Yeast Genetics and Molecular and Cell Biology New York: Academic Press;
    [Google Scholar]
  18. Hong M. P., Vu K., Bautos J., Gelli A.. ( 2010;). Cch1 restores intracellular Ca2+ in fungal cells during endoplasmic reticulum stress. J Biol Chem285:10951–10958 [CrossRef][PubMed]
    [Google Scholar]
  19. Iida H., Yagawa Y., Anraku Y.. ( 1990;). Essential role for induced Ca2+ influx followed by [Ca2+] i rise in maintaining viability of yeast cells late in the mating pheromone response pathway. A study of [Ca2+] i in single Saccharomyces cerevisiae cells with imaging of fura-2. J Biol Chem265:13391–13399[PubMed]
    [Google Scholar]
  20. Iida H., Nakamura H., Ono T., Okumura M. S., Anraku Y.. ( 1994;). MID1, a novel Saccharomyces cerevisiae gene encoding a plasma membrane protein, is required for Ca2+ influx and mating. Mol Cell Biol14:8259–8271[PubMed]
    [Google Scholar]
  21. Kanzaki M., Nagasawa M., Kojima I., Sato C., Naruse K., Sokabe M., Iida H.. ( 1999;). Molecular identification of a eukaryotic, stretch-activated nonselective cation channel. Science285:882–886 [CrossRef][PubMed]
    [Google Scholar]
  22. Kanzaki M., Nagasawa M., Kojima I., Sato C., Naruse K., Sokabe M., Iida H.. ( 2000;). Report clarification. Science288:1347 [CrossRef]
    [Google Scholar]
  23. Kopecká M., Gabriel M.. ( 1992;). The influence of Congo red on the cell wall and (1→3)-β-d-glucan microfibril biogenesis in Saccharomyces cerevisiae. Arch Microbiol158:115–126 [CrossRef][PubMed]
    [Google Scholar]
  24. Kornmann B., Currie E., Collins S. R., Schuldiner M., Nunnari J., Weissman J. S., Walter P.. ( 2009;). An ER-mitochondria tethering complex revealed by a synthetic biology screen. Science325:477–481 [CrossRef][PubMed]
    [Google Scholar]
  25. Krysan D. J.. ( 2009;). The cell wall and endoplasmic reticulum stress responses are coordinately regulated in Saccharomyces cerevisiae. Commun Integr Biol2:233–235 [CrossRef][PubMed]
    [Google Scholar]
  26. Locke E. G., Bonilla M., Liang L., Takita Y., Cunningham K. W.. ( 2000;). A homolog of voltage-gated Ca2+ channels stimulated by depletion of secretory Ca2+ in yeast. Mol Cell Biol20:6686–6694 [CrossRef][PubMed]
    [Google Scholar]
  27. Miseta A., Kellermayer R., Aiello D. P., Fu L., Bedwell D. M.. ( 1999;). The vacuolar Ca2+/H+ exchanger Vcx1p/Hum1p tightly controls cytosolic Ca2+ levels in S. cerevisiae. FEBS Lett451:132–136 [CrossRef][PubMed]
    [Google Scholar]
  28. Nakagawa Y., Katagiri T., Shinozaki K., Qi Z., Tatsumi H., Furuichi T., Kishigami A., Sokabe M., Kojima I. et al. ( 2007;). Arabidopsis plasma membrane protein crucial for Ca2+ influx and touch sensing in roots. Proc Natl Acad Sci U S A104:3639–3644 [CrossRef][PubMed]
    [Google Scholar]
  29. Nakayama K., Nagasu T., Shimma Y., Kuromitsu J., Jigami Y.. ( 1992;). OCH1 encodes a novel membrane bound mannosyltransferase: outer chain elongation of asparagine-linked oligosaccharides. EMBO J11:2511–2519[PubMed]
    [Google Scholar]
  30. O’Connor S. E., Imperiali B.. ( 1996;). Modulation of protein structure and function by asparagine-linked glycosylation. Chem Biol3:803–812 [CrossRef][PubMed]
    [Google Scholar]
  31. Ozeki-Miyawaki C., Moriya Y., Tatsumi H., Iida H., Sokabe M.. ( 2005;). Identification of functional domains of Mid1, a stretch-activated channel component, necessary for localization to the plasma membrane and Ca2+ permeation. Exp Cell Res311:84–95 [CrossRef][PubMed]
    [Google Scholar]
  32. Pittman J. K.. ( 2011;). Vacuolar Ca2+ uptake. Cell Calcium50:139–146 [CrossRef][PubMed]
    [Google Scholar]
  33. Roncero C., Durán A.. ( 1985;). Effect of Calcofluor white and Congo red on fungal cell wall morphogenesis: in vivo activation of chitin polymerization. J Bacteriol163:1180–1185[PubMed]
    [Google Scholar]
  34. Sambrook J., Fritsch E. F., Maniatis T.. ( 2001;). Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  35. Sanders D., Pelloux J., Brownlee C., Harper J. F.. ( 2002;). Calcium at the crossroads of signaling. Plant Cell14:Suppl.S401–S417[PubMed]
    [Google Scholar]
  36. Schmitt M. E., Brown T. A., Trumpower B. L.. ( 1990;). A rapid and simple method for preparation of RNA from Saccharomyces cerevisiae. Nucleic Acids Res18:3091–3092 [CrossRef][PubMed]
    [Google Scholar]
  37. Simons J. F., Ferro-Novick S., Rose M. D., Helenius A.. ( 1995;). BiP/Kar2p serves as a molecular chaperone during carboxypeptidase Y folding in yeast. J Cell Biol130:41–49 [CrossRef][PubMed]
    [Google Scholar]
  38. Strayle J., Pozzan T., Rudolph H. K.. ( 1999;). Steady-state free Ca2+ in the yeast endoplasmic reticulum reaches only 10 µM and is mainly controlled by the secretory pathway pump Pmr1. EMBO J18:4733–4743 [CrossRef][PubMed]
    [Google Scholar]
  39. Uccelletti D., Mancini P., Farina F., Morrone S., Palleschi C.. ( 1999;). Inactivation of the KIPMR1 gene of Kluyveromyces lactis results in defective cell-wall morphogenesis. Microbiology145:1079–1087 [CrossRef][PubMed]
    [Google Scholar]
  40. Uccelletti D., Pacelli V., Mancini P., Palleschi C.. ( 2000;). vga mutants of Kluyveromyces lactis show cell integrity defects. Yeast16:1161–1171 [CrossRef][PubMed]
    [Google Scholar]
  41. Uccelletti D., Farina F., Rufini S., Magnelli P., Abeijon C., Palleschi C.. ( 2006;). The Kluyveromyces lactis α1,6-mannosyltransferase KlOch1p is required for cell-wall organization and proper functioning of the secretory pathway. FEMS Yeast Res6:449–457 [CrossRef][PubMed]
    [Google Scholar]
  42. Xu Y. X., Liu L., Caffaro C. E., Hirschberg C. B.. ( 2010;). Inhibition of Golgi apparatus glycosylation causes endoplasmic reticulum stress and decreased protein synthesis. J Biol Chem285:24600–24608 [CrossRef][PubMed]
    [Google Scholar]
  43. Yoshimura H., Tada T., Iida H.. ( 2004;). Subcellular localization and oligomeric structure of the yeast putative stretch-activated Ca2+ channel component Mid1. Exp Cell Res293:185–195 [CrossRef][PubMed]
    [Google Scholar]
  44. Zanni E., Farina F., Ricci A., Mancini P., Frank C., Palleschi C., Uccelletti D.. ( 2009;). The Golgi α-1,6 mannosyltransferase KlOch1p of Kluyveromyces lactis is required for Ca2+/calmodulin-based signaling and for proper mitochondrial functionality. BMC Cell Biol10:86 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.056283-0
Loading
/content/journal/micro/10.1099/mic.0.056283-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error