1887

Abstract

Sensitive sensory mechanisms are instrumental in affording the capacity to establish diverse yet severe human infections, which can manifest themselves in long-term untreatable disease. The ability of to tightly regulate gene expression and virulence factor production, in response to activation of these sensory components, enables the pathogen to sustain infection despite the host immune response and aggressive antibiotic treatment. Although a number of factors are recognized as playing a role in early infection, very little is known regarding the sensors involved in this process. In this study, we identified PA3191 as a novel host-responsive sensor that plays a key role during –host interactions and is required for optimum colonization and dissemination in a mouse model of infection. We demonstrated that PA3191 contributed to modulation of the type III secretion system (T3SS) in response to host cells and T3SS-inducing conditions . PA3191 (designated GtrS) acted in concert with the response regulator GltR to regulate the OprB transport system and subsequently carbon metabolism. Through this signal transduction pathway, T3SS activation was mediated via the RsmAYZ regulatory cascade and involved the global anaerobic response regulator Anr.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.056127-0
2012-04-01
2020-10-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/4/1057.html?itemId=/content/journal/micro/10.1099/mic.0.056127-0&mimeType=html&fmt=ahah

References

  1. Adewoye L. O., Worobec E. A.. ( 1999;). Multiple environmental factors regulate the expression of the carbohydrate-selective OprB porin of Pseudomonas aeruginosa . Can J Microbiol45:1033–1042[PubMed][CrossRef]
    [Google Scholar]
  2. Alteri C. J., Smith S. N., Mobley H. L.. ( 2009;). Fitness of Escherichia coli during urinary tract infection requires gluconeogenesis and the TCA cycle. PLoS Pathog5:e1000448[PubMed][CrossRef]
    [Google Scholar]
  3. An R., Grewal P. S.. ( 2010;). Molecular mechanisms of persistence of mutualistic bacteria Photorhabdus in the entomopathogenic nematode host. PLoS ONE5:13154[PubMed][CrossRef]
    [Google Scholar]
  4. Becher A., Schweizer H. P.. ( 2000;). Integration-proficient Pseudomonas aeruginosa vectors for isolation of single-copy chromosomal lacZ and lux gene fusions. Biotechniques29:948–950, 952[PubMed]
    [Google Scholar]
  5. Brencic A., Lory S.. ( 2009;). Determination of the regulon and identification of novel mRNA targets of Pseudomonas aeruginosa RsmA. Mol Microbiol72:612–632[PubMed][CrossRef]
    [Google Scholar]
  6. Brencic A., McFarland K. A., McManus H. R., Castang S., Mogno I., Dove S. L., Lory S.. ( 2009;). The GacS/GacA signal transduction system of Pseudomonas aeruginosa acts exclusively through its control over the transcription of the RsmY and RsmZ regulatory small RNAs. Mol Microbiol73:434–445[PubMed][CrossRef]
    [Google Scholar]
  7. Brutinel E. D., Vakulskas C. A., Yahr T. L.. ( 2010;). ExsD inhibits expression of the Pseudomonas aeruginosa type III secretion system by disrupting ExsA self-association and DNA binding activity. J Bacteriol192:1479–1486[PubMed][CrossRef]
    [Google Scholar]
  8. Burns J. L., Jonas M., Chi E. Y., Clark D. K., Berger A., Griffith A.. ( 1996;). Invasion of respiratory epithelial cells by Burkholderia (Pseudomonas) cepacia . Infect Immun64:4054–4059[PubMed]
    [Google Scholar]
  9. Burrowes E., Baysse C., Adams C., O’Gara F.. ( 2006;). Influence of the regulatory protein RsmA on cellular functions in Pseudomonas aeruginosa PAO1, as revealed by transcriptome analysis. Microbiology152:405–418[PubMed][CrossRef]
    [Google Scholar]
  10. Comolli J. C., Hauser A. R., Waite L., Whitchurch C. B., Mattick J. S., Engel J. N.. ( 1999;). Pseudomonas aeruginosa gene products PilT and PilU are required for cytotoxicity in vitro and virulence in a mouse model of acute pneumonia. Infect Immun67:3625–3630[PubMed]
    [Google Scholar]
  11. Cowell B. A., Evans D. J., Fleiszig S. M.. ( 2005;). Actin cytoskeleton disruption by ExoY and its effects on Pseudomonas aeruginosa invasion. FEMS Microbiol Lett250:71–76[PubMed][CrossRef]
    [Google Scholar]
  12. Crack J., Green J., Thomson A. J.. ( 2004;). Mechanism of oxygen sensing by the bacterial transcription factor fumarate-nitrate reduction (FNR). J Biol Chem279:9278–9286[PubMed][CrossRef]
    [Google Scholar]
  13. Dacheux D., Epaulard O., de Groot A., Guery B., Leberre R., Attree I., Polack B., Toussaint B.. ( 2002;). Activation of the Pseudomonas aeruginosa type III secretion system requires an intact pyruvate dehydrogenase aceAB operon. Infect Immun70:3973–3977[PubMed][CrossRef]
    [Google Scholar]
  14. Dasgupta N., Ashare A., Hunninghake G. W., Yahr T. L.. ( 2006;). Transcriptional induction of the Pseudomonas aeruginosa type III secretion system by low Ca2+ and host cell contact proceeds through two distinct signaling pathways. Infect Immun74:3334–3341[PubMed][CrossRef]
    [Google Scholar]
  15. Garrity-Ryan L., Kazmierczak B., Kowal R., Comolli J., Hauser A., Engel J. N.. ( 2000;). The arginine finger domain of ExoT contributes to actin cytoskeleton disruption and inhibition of internalization of Pseudomonas aeruginosa by epithelial cells and macrophages. Infect Immun68:7100–7113[PubMed][CrossRef]
    [Google Scholar]
  16. Geiser T. K., Kazmierczak B. I., Garrity-Ryan L. K., Matthay M. A., Engel J. N.. ( 2001;). Pseudomonas aeruginosa ExoT inhibits in vitro lung epithelial wound repair. Cell Microbiol3:223–236[PubMed][CrossRef]
    [Google Scholar]
  17. Goodman A. L., Merighi M., Hyodo M., Ventre I., Filloux A., Lory S.. ( 2009;). Direct interaction between sensor kinase proteins mediates acute and chronic disease phenotypes in a bacterial pathogen. Genes Dev23:249–259[PubMed][CrossRef]
    [Google Scholar]
  18. Hauser A. R., Fleiszig S., Kang P. J., Mostov K., Engel J. N.. ( 1998;). Defects in type III secretion correlate with internalization of Pseudomonas aeruginosa by epithelial cells. Infect Immun66:1413–1420[PubMed]
    [Google Scholar]
  19. Heurlier K., Williams F., Heeb S., Dormond C., Pessi G., Singer D., Cámara M., Williams P., Haas D.. ( 2004;). Positive control of swarming, rhamnolipid synthesis, and lipase production by the posttranscriptional RsmA/RsmZ system in Pseudomonas aeruginosa PAO1. J Bacteriol186:2936–2945[PubMed][CrossRef]
    [Google Scholar]
  20. Hoang T. T., Karkhoff-Schweizer R. R., Kutchma A. J., Schweizer H. P.. ( 1998;). A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene212:77–86[PubMed][CrossRef]
    [Google Scholar]
  21. Hoang T. T., Kutchma A. J., Becher A., Schweizer H. P.. ( 2000;). Integration-proficient plasmids for Pseudomonas aeruginosa: site-specific integration and use for engineering of reporter and expression strains. Plasmid43:59–72[PubMed][CrossRef]
    [Google Scholar]
  22. Humair B., Wackwitz B., Haas D.. ( 2010;). GacA-controlled activation of promoters for small RNA genes in Pseudomonas fluorescens . Appl Environ Microbiol76:1497–1506[PubMed][CrossRef]
    [Google Scholar]
  23. Hunt J. C., Phibbs P. V. Jr. ( 1983;). Regulation of alternate peripheral pathways of glucose catabolism during aerobic and anaerobic growth of Pseudomonas aeruginosa . J Bacteriol154:793–802[PubMed]
    [Google Scholar]
  24. Hurley B. P., Goodman A. L., Mumy K. L., Murphy P., Lory S., McCormick B. A.. ( 2010;). The two-component sensor response regulator RoxS/RoxR plays a role in Pseudomonas aeruginosa interactions with airway epithelial cells. Microbes Infect12:190–198[PubMed][CrossRef]
    [Google Scholar]
  25. Jacobs M. A., Alwood A., Thaipisuttikul I., Spencer D., Haugen E., Ernst S., Will O., Kaul R., Raymond C.. & other authors ( 2003;). Comprehensive transposon mutant library of Pseudomonas aeruginosa . Proc Natl Acad Sci U S A100:14339–14344[PubMed][CrossRef]
    [Google Scholar]
  26. Kay E., Humair B., Dénervaud V., Riedel K., Spahr S., Eberl L., Valverde C., Haas D.. ( 2006;). Two GacA-dependent small RNAs modulate the quorum-sensing response in Pseudomonas aeruginosa . J Bacteriol188:6026–6033[PubMed][CrossRef]
    [Google Scholar]
  27. Kiely P. D., O’Callaghan J., Abbas A., O’Gara F.. ( 2008;). Genetic analysis of genes involved in dipeptide metabolism and cytotoxicity in Pseudomonas aeruginosa PAO1. Microbiology154:2209–2218[PubMed][CrossRef]
    [Google Scholar]
  28. Kovach M. E., Elzer P. H., Hill D. S., Robertson G. T., Farris M. A., Roop R. M. II, Peterson K. M.. ( 1995;). Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene166:175–176[PubMed][CrossRef]
    [Google Scholar]
  29. Lewenza S., Gardy J. L., Brinkman F. S., Hancock R. E.. ( 2005;). Genome-wide identification of Pseudomonas aeruginosa exported proteins using a consensus computational strategy combined with a laboratory-based PhoA fusion screen. Genome Res15:321–329[PubMed][CrossRef]
    [Google Scholar]
  30. Liberati N. T., Urbach J. M., Miyata S., Lee D. G., Drenkard E., Wu G., Villanueva J., Wei T., Ausubel F. M.. ( 2006;). An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants. Proc Natl Acad Sci U S A103:2833–2838[PubMed][CrossRef]
    [Google Scholar]
  31. Mahajan-Miklos S., Tan M. W., Rahme L. G., Ausubel F. M.. ( 1999;). Molecular mechanisms of bacterial virulence elucidated using a Pseudomonas aeruginosa-Caenorhabditis elegans pathogenesis model. Cell96:47–56[PubMed][CrossRef]
    [Google Scholar]
  32. Manos J., Arthur J., Rose B., Bell S., Tingpej P., Hu H., Webb J., Kjelleberg S., Gorrell M. D.. & other authors ( 2009;). Gene expression characteristics of a cystic fibrosis epidemic strain of Pseudomonas aeruginosa during biofilm and planktonic growth. FEMS Microbiol Lett292:107–114[PubMed][CrossRef]
    [Google Scholar]
  33. Moore L. J., Mettert E. L., Kiley P. J.. ( 2006;). Regulation of FNR dimerization by subunit charge repulsion. J Biol Chem281:33268–33275[PubMed][CrossRef]
    [Google Scholar]
  34. Mulcahy H., O’Callaghan J., O’Grady E. P., Adams C., O’Gara F.. ( 2006;). The posttranscriptional regulator RsmA plays a role in the interaction between Pseudomonas aeruginosa and human airway epithelial cells by positively regulating the type III secretion system. Infect Immun74:3012–3015[PubMed][CrossRef]
    [Google Scholar]
  35. Mulcahy H., O’Callaghan J., O’Grady E. P., Maciá M. D., Borrell N., Gómez C., Casey P. G., Hill C., Adams C.. & other authors ( 2008;). Pseudomonas aeruginosa RsmA plays an important role during murine infection by influencing colonization, virulence, persistence, and pulmonary inflammation. Infect Immun76:632–638[PubMed][CrossRef]
    [Google Scholar]
  36. Navon-Venezia S., Ben-Ami R., Carmeli Y.. ( 2005;). Update on Pseudomonas aeruginosa and Acinetobacter baumannii infections in the healthcare setting. Curr Opin Infect Dis18:306–313[PubMed][CrossRef]
    [Google Scholar]
  37. Nouwens A. S., Cordwell S. J., Larsen M. R., Molloy M. P., Gillings M., Willcox M. D., Walsh B. J.. ( 2000;). Complementing genomics with proteomics: the membrane subproteome of Pseudomonas aeruginosa PAO1. Electrophoresis21:3797–3809[PubMed][CrossRef]
    [Google Scholar]
  38. O’Callaghan J., Reen F. J., Adams C., O’Gara F.. ( 2011;). Low oxygen induces the type III secretion system in Pseudomonas aeruginosa via modulation of the small RNAs rsmZ and rsmY . Microbiology157:3417–3428[PubMed][CrossRef]
    [Google Scholar]
  39. Pessi G., Williams F., Hindle Z., Heurlier K., Holden M. T., Cámara M., Haas D., Williams P.. ( 2001;). The global posttranscriptional regulator RsmA modulates production of virulence determinants and N-acylhomoserine lactones in Pseudomonas aeruginosa . J Bacteriol183:6676–6683[PubMed][CrossRef]
    [Google Scholar]
  40. Quinn J. P.. ( 1998;). Clinical problems posed by multiresistant nonfermenting Gram-negative pathogens. Clin Infect Dis27:Suppl. 1S117–S124[PubMed][CrossRef]
    [Google Scholar]
  41. Rahme L. G., Stevens E. J., Wolfort S. F., Shao J., Tompkins R. G., Ausubel F. M.. ( 1995;). Common virulence factors for bacterial pathogenicity in plants and animals. Science268:1899–1902[PubMed][CrossRef]
    [Google Scholar]
  42. Rajan S., Cacalano G., Bryan R., Ratner A. J., Sontich C. U., van Heerckeren A., Davis P., Prince A.. ( 2000;). Pseudomonas aeruginosa induction of apoptosis in respiratory epithelial cells: analysis of the effects of cystic fibrosis transmembrane conductance regulator dysfunction and bacterial virulence factors. Am J Respir Cell Mol Biol23:304–312[PubMed][CrossRef]
    [Google Scholar]
  43. Rietsch A., Mekalanos J. J.. ( 2006;). Metabolic regulation of type III secretion gene expression in Pseudomonas aeruginosa . Mol Microbiol59:807–820[PubMed][CrossRef]
    [Google Scholar]
  44. Rietsch A., Wolfgang M. C., Mekalanos J. J.. ( 2004;). Effect of metabolic imbalance on expression of type III secretion genes in Pseudomonas aeruginosa . Infect Immun72:1383–1390[PubMed][CrossRef]
    [Google Scholar]
  45. Roy-Burman A., Savel R. H., Racine S., Swanson B. L., Revadigar N. S., Fujimoto J., Sawa T., Frank D. W., Wiener-Kronish J. P.. ( 2001;). Type III protein secretion is associated with death in lower respiratory and systemic Pseudomonas aeruginosa infections. J Infect Dis183:1767–1774[PubMed][CrossRef]
    [Google Scholar]
  46. Sage A. E., Proctor W. D., Phibbs P. V. Jr. ( 1996;). A two-component response regulator, gltR, is required for glucose transport activity in Pseudomonas aeruginosa PAO1. J Bacteriol178:6064–6066[PubMed]
    [Google Scholar]
  47. Saravolac E. G., Taylor N. F., Benz R., Hancock R. E.. ( 1991;). Purification of glucose-inducible outer membrane protein OprB of Pseudomonas putida and reconstitution of glucose-specific pores. J Bacteriol173:4970–4976
    [Google Scholar]
  48. Savli H., Karadenizli A., Kolayli F., Gundes S., Ozbek U., Vahaboglu H.. ( 2003;). Expression stability of six housekeeping genes: A proposal for resistance gene quantification studies of Pseudomonas aeruginosa by real-time quantitative RT-PCR. J Med Microbiol52:403–408[PubMed][CrossRef]
    [Google Scholar]
  49. Sawers R. G.. ( 1991;). Identification and molecular characterization of a transcriptional regulator from Pseudomonas aeruginosa PAO1 exhibiting structural and functional similarity to the FNR protein of Escherichia coli . Mol Microbiol5:1469–1481[PubMed][CrossRef]
    [Google Scholar]
  50. Schobert M., Jahn D.. ( 2010;). Anaerobic physiology of Pseudomonas aeruginosa in the cystic fibrosis lung. Int J Med Microbiol300:549–556[PubMed][CrossRef]
    [Google Scholar]
  51. Schulert G. S., Feltman H., Rabin S. D., Martin C. G., Battle S. E., Rello J., Hauser A. R.. ( 2003;). Secretion of the toxin ExoU is a marker for highly virulent Pseudomonas aeruginosa isolates obtained from patients with hospital-acquired pneumonia. J Infect Dis188:1695–1706[PubMed][CrossRef]
    [Google Scholar]
  52. Siegel R. E.. ( 2008;). Emerging Gram-negative antibiotic resistance: daunting challenges, declining sensitivities, and dire consequences. Respir Care53:471–479[PubMed]
    [Google Scholar]
  53. Son M. S., Matthews W. J. Jr, Kang Y., Nguyen D. T., Hoang T. T.. ( 2007;). In vivo evidence of Pseudomonas aeruginosa nutrient acquisition and pathogenesis in the lungs of cystic fibrosis patients. Infect Immun75:5313–5324[PubMed][CrossRef]
    [Google Scholar]
  54. Spiers A. J., Buckling A., Rainey P. B.. ( 2000;). The causes of Pseudomonas diversity. Microbiology146:2345–2350[PubMed]
    [Google Scholar]
  55. Stover C. K., Pham X. Q., Erwin A. L., Mizoguchi S. D., Warrener P., Hickey M. J., Brinkman F. S., Hufnagle W. O., Kowalik D. J.. & other authors ( 2000;). Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature406:959–964[PubMed][CrossRef]
    [Google Scholar]
  56. Takeuchi K., Kiefer P., Reimmann C., Keel C., Dubuis C., Rolli J., Vorholt J. A., Haas D.. ( 2009;). Small RNA-dependent expression of secondary metabolism is controlled by Krebs cycle function in Pseudomonas fluorescens . J Biol Chem284:34976–34985[PubMed][CrossRef]
    [Google Scholar]
  57. Trunk K., Benkert B., Quäck N., Münch R., Scheer M., Garbe J., Jänsch L., Trost M., Wehland J.. & other authors ( 2010;). Anaerobic adaptation in Pseudomonas aeruginosa: definition of the Anr and Dnr regulons. Environ Microbiol12:1719–1733[PubMed][CrossRef]
    [Google Scholar]
  58. Vance R. E., Rietsch A., Mekalanos J. J.. ( 2005;). Role of the type III secreted exoenzymes S, T, and Y in systemic spread of Pseudomonas aeruginosa PAO1 in vivo. Infect Immun73:1706–1713[PubMed][CrossRef]
    [Google Scholar]
  59. Ventre I., Goodman A. L., Vallet-Gely I., Vasseur P., Soscia C., Molin S., Bleves S., Lazdunski A., Lory S., Filloux A.. ( 2006;). Multiple sensors control reciprocal expression of Pseudomonas aeruginosa regulatory RNA and virulence genes. Proc Natl Acad Sci U S A103:171–176[PubMed][CrossRef]
    [Google Scholar]
  60. Vincent F., Round A., Reynaud A., Bordi C., Filloux A., Bourne Y.. ( 2010;). Distinct oligomeric forms of the Pseudomonas aeruginosa RetS sensor domain modulate accessibility to the ligand binding site. Environ Microbiol12:1775–1786[PubMed][CrossRef]
    [Google Scholar]
  61. Waite R. D., Curtis M. A.. ( 2009;). Pseudomonas aeruginosa PAO1 pyocin production affects population dynamics within mixed-culture biofilms. J Bacteriol191:1349–1354[PubMed][CrossRef]
    [Google Scholar]
  62. Williams S. G., Greenwood J. A., Jones C. W.. ( 1994;). The effect of nutrient limitation on glycerol uptake and metabolism in continuous cultures of Pseudomonas aeruginosa . Microbiology140:2961–2969[PubMed][CrossRef]
    [Google Scholar]
  63. Wolfgang M. C., Lee V. T., Gilmore M. E., Lory S.. ( 2003;). Coordinate regulation of bacterial virulence genes by a novel adenylate cyclase-dependent signaling pathway. Dev Cell4:253–263[PubMed][CrossRef]
    [Google Scholar]
  64. Wu W., Badrane H., Arora S., Baker H. V., Jin S.. ( 2004;). MucA-mediated coordination of type III secretion and alginate synthesis in Pseudomonas aeruginosa . J Bacteriol186:7575–7585[PubMed][CrossRef]
    [Google Scholar]
  65. Wylie J. L., Worobec E. A.. ( 1994;). Cloning and nucleotide sequence of the Pseudomonas aeruginosa glucose-selective OprB porin gene and distribution of OprB within the family Pseudomonadaceae . Eur J Biochem220:505–512[PubMed][CrossRef]
    [Google Scholar]
  66. Wylie J. L., Worobec E. A.. ( 1995;). The OprB porin plays a central role in carbohydrate uptake in Pseudomonas aeruginosa . J Bacteriol177:3021–3026[PubMed]
    [Google Scholar]
  67. Yahr T. L., Wolfgang M. C.. ( 2006;). Transcriptional regulation of the Pseudomonas aeruginosa type III secretion system. Mol Microbiol62:631–640[PubMed][CrossRef]
    [Google Scholar]
  68. Zimmermann A., Reimmann C., Galimand M., Haas D.. ( 1991;). Anaerobic growth and cyanide synthesis of Pseudomonas aeruginosa depend on anr, a regulatory gene homologous with fnr of Escherichia coli . Mol Microbiol5:1483–1490[PubMed][CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.056127-0
Loading
/content/journal/micro/10.1099/mic.0.056127-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error