1887

Abstract

JG1 produces a protein PfaP and a range of small-molecule compounds with inhibitory activities against . The PfaP protein was purified from the extracellular products of JG1 by electroelution, and antibacterial activity was observed by an in-gel antibacterial assay. The complete amino acid sequence (694 aa) of PfaP was determined by peptide sequencing and subsequent alignment with the proteome sequence of strain JG1. The calculated molecular mass of PfaP was 77.0 kDa. PfaP was 58 % identical to -lysine oxidase AlpP of D2, and 54 % identical to the marinocine antimicrobial protein of MMB-1. Five small molecules (compounds 1–5) with antibacterial activity, which were identified as -hydroxybenzoic acid (1), -cinnamic acid (2), 6-bromoindolyl-3-acetic acid (3), -hydroxybenzoisoxazolone (4) and 2′-deoxyadenosine (5), were purified by sequential column chromatography over silica gel, Sephadex LH-20 and RP-18 from ethyl acetate extract of strain JG1, and their structures were determined by NMR and MS. Brown compound 3, the only brominated compound, showed antibacterial activity against both Gram-positive and Gram-negative bacteria.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.055970-0
2012-03-01
2020-11-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/3/835.html?itemId=/content/journal/micro/10.1099/mic.0.055970-0&mimeType=html&fmt=ahah

References

  1. Alcaide E., Blasco M. D., Esteve C.. ( 2005;). Occurrence of drug-resistant bacteria in two European eel farms. Appl Environ Microbiol71:3348–3350 [CrossRef][PubMed]
    [Google Scholar]
  2. Anand T. P., Bhat A. W., Shouche Y. S., Roy U., Siddharth J., Sarma S. P.. ( 2006;). Antimicrobial activity of marine bacteria associated with sponges from the waters off the coast of South East India. Microbiol Res161:252–262 [CrossRef][PubMed]
    [Google Scholar]
  3. Austin B., Austin D. A.. 2007; Bacterial Fish Pathogens: Disease of Farmed and Wild Fish, 4th edn. Dordrecht: Springer;
    [Google Scholar]
  4. Bendtsen J. D., Nielsen H., von Heijne G., Brunak S.. ( 2004;). Improved prediction of signal peptides: SignalP 3.0. J Mol Biol340:783–795 [CrossRef][PubMed]
    [Google Scholar]
  5. Bendtsen J. D., Kiemer L., Fausbøll A., Brunak S.. ( 2005;). Non-classical protein secretion in bacteria. BMC Microbiol5:58 [CrossRef][PubMed]
    [Google Scholar]
  6. Bowman J. P.. ( 2007;). Bioactive compound synthetic capacity and ecological significance of marine bacterial genus Pseudoalteromonas . Mar Drugs5:220–241 [CrossRef][PubMed]
    [Google Scholar]
  7. Breittmayer J. P., Gauthier M. J.. ( 1979;). Denombrement des bacteries en milieu marin: facteurs de variation et d'incertitude. Ann Microbiol (Paris)130:245–256
    [Google Scholar]
  8. Chen W., Lin C., Chen C., Wang J., Sheu S.. ( 2010;). Involvement of an l-amino acid oxidase in the activity of the marine bacterium Pseudoalteromonas flavipulchra against methicillin-resistant Staphylococcus aureus . Enzyme Microb Technol47:52–58 [CrossRef]
    [Google Scholar]
  9. Dopazo C. P., Lemos M. L., Lodeiros C., Bolinches J., Barja J. L., Toranzo A. E.. ( 1988;). Inhibitory activity of antibiotic-producing marine bacteria against fish pathogens. J Appl Bacteriol65:97–101 [CrossRef][PubMed]
    [Google Scholar]
  10. Egan S., Holmström C., Kjelleberg S.. ( 2001;). Pseudoalteromonas ulvae sp. nov., a bacterium with antifouling activities isolated from the surface of a marine alga. Int J Syst Evol Microbiol51:1499–1504[PubMed]
    [Google Scholar]
  11. Egan S., James S., Holmström C., Kjelleberg S.. ( 2002;). Correlation between pigmentation and antifouling compounds produced by Pseudoalteromonas tunicata . Environ Microbiol4:433–442 [CrossRef][PubMed]
    [Google Scholar]
  12. Franks A., Haywood P., Holmström C., Egan S., Kjelleberg S., Kumar N.. ( 2005;). Isolation and structure elucidation of a novel yellow pigment from the marine bacterium Pseudoalteromonas tunicata . Molecules10:1286–1291 [CrossRef][PubMed]
    [Google Scholar]
  13. Gauthier M. J., Flatau G. N.. ( 1976;). Antibacterial activity of marine violet-pigmented Alteromonas with special reference to the production of brominated compounds. Can J Microbiol22:1612–1619 [CrossRef][PubMed]
    [Google Scholar]
  14. Gauthier G., Gauthier M., Christen R.. ( 1995;). Phylogenetic analysis of the genera Alteromonas, Shewanella and Moritella using genes coding for small-subunit rRNA sequences and division of the genus Alteromonas into two genera, Alteromonas (emended) and Pseudoalteromonas gen. nov., and proposal of twelve new species combinations. Int J Syst Bacteriol45:755–761[CrossRef]
    [Google Scholar]
  15. Gómez D., Espinosa E., Bertazzo M., Lucas-Elío P., Solano F., Sanchez-Amat A.. ( 2008;). The macromolecule with antimicrobial activity synthesized by Pseudoalteromonas luteoviolacea strains is an l-amino acid oxidase. Appl Microbiol Biotechnol79:925–930 [CrossRef][PubMed]
    [Google Scholar]
  16. Gram L., Melchiorsen J., Spanggaard B., Huber I., Nielsen T. F.. ( 1999;). Inhibition of Vibrio anguillarum by Pseudomonas fluorescens AH2, a possible probiotic treatment of fish. Appl Environ Microbiol65:969–973[PubMed]
    [Google Scholar]
  17. Holmström C., James S., Neilan B. A., White D. C., Kjelleberg S.. ( 1998;). Pseudoalteromonas tunicata sp. nov., a bacterium that produces antifouling agents. Int J Syst Bacteriol48:1205–1212 [CrossRef][PubMed]
    [Google Scholar]
  18. Isnansetyo A., Kamei Y.. ( 2003;). MC21-A, a bactericidal antibiotic produced by a new marine bacterium, Pseudoalteromonas phenolica sp. nov. O-BC30T, against methicillin-resistant Staphylococcus aureus . Antimicrob Agents Chemother47:480–488 [CrossRef][PubMed]
    [Google Scholar]
  19. Ivanova E. P., Shevchenko L. S., Sawabe T., Lysenko A. M., Svetashev V. I., Gorshkova N. M., Satomi M., Christen R., Mikhailov V. V.. ( 2002;). Pseudoalteromonas maricaloris sp. nov., isolated from an Australian sponge, and reclassification of [Pseudoalteromonas aurantia] NCIMB 2033 as Pseudoalteromonas flavipulchra sp. nov. Int J Syst Evol Microbiol52:263–271[PubMed]
    [Google Scholar]
  20. James S. G., Holmström C., Kjelleberg S.. ( 1996;). Purification and characterization of a novel antibacterial protein from the marine bacterium D2. Appl Environ Microbiol62:2783–2788[PubMed]
    [Google Scholar]
  21. Jaruchoktaweechai C., Suwanborirux K., Tanasupawatt S., Kittakoop P., Menasveta P.. ( 2000;). New macrolactins from a marine Bacillus sp. Sc026. J Nat Prod63:984–986 [CrossRef][PubMed]
    [Google Scholar]
  22. Jin G., Wang S., Yu M., Yan S., Zhang X.. ( 2010;). Identification of a marine antagonistic strain JG1 and establishment of a polymerase chain reaction detection technique based on the gyrB gene. Aquacult Res41:1867–1874 [CrossRef]
    [Google Scholar]
  23. Kalinovskaya N. I., Ivanova E. P., Alexeeva Y. V., Gorshkova N. M., Kuznetsova T. A., Dmitrenok A. S., Nicolau D. V.. ( 2004;). Low-molecular-weight, biologically active compounds from marine Pseudoalteromonas species. Curr Microbiol48:441–446 [CrossRef][PubMed]
    [Google Scholar]
  24. Kuberski S., Gebicki J.. ( 1992;). Evidence for a ketene intermediate in the photochemical transformation of matrix-isolated o-nitrobenzaldehyde. J Mol Struct275:105–110 [CrossRef]
    [Google Scholar]
  25. Laemmli U. K.. ( 1970;). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature227:680–685 [CrossRef][PubMed]
    [Google Scholar]
  26. Longeon A., Peduzzi J., Barthélemy M., Corre S., Nicolas J. L., Guyot M.. ( 2004;). Purification and partial identification of novel antimicrobial protein from marine bacterium Pseudoalteromonas species strain X153. Mar Biotechnol (NY)6:633–641 [CrossRef][PubMed]
    [Google Scholar]
  27. Lucas-Elio P., Hernandez P., Sanchez-Amat A., Solano F.. ( 2005;). Purification and partial characterization of marinocine, a new broad-spectrum antibacterial protein produced by Marinomonas mediterranea . Biochim Biophys Acta1721:193–203 [CrossRef][PubMed]
    [Google Scholar]
  28. Lucas-Elío P., Gómez D., Solano F., Sanchez-Amat A.. ( 2006;). The antimicrobial activity of marinocine, synthesized by Marinomonas mediterranea, is due to hydrogen peroxide generated by its lysine oxidase activity. J Bacteriol188:2493–2501 [CrossRef][PubMed]
    [Google Scholar]
  29. Messi P., Guerrieri E., Bondi M.. ( 2003;). Bacteriocin-like substance (BLS) production in Aeromonas hydrophila water isolates. FEMS Microbiol Lett220:121–125 [CrossRef][PubMed]
    [Google Scholar]
  30. Niu X.-M., Li S.-H., Na Z., Mei S.-X., Zhao Q.-S., Sun H.-D.. ( 2003;). Studies on chemical constituents of Isodon eriocalyx var. laxiflora . Chin Tradit Herbal Drugs34:300–303
    [Google Scholar]
  31. Planas M., Pérez-Lorenzo M., Hjelm M., Gram L., Fiksdal I. U., Bergh Ø., Pintado J.. ( 2006;). Probiotic effect in vivo of Roseobacter strain 27-4 against Vibrio (Listonella) anguillarum infections in turbot (Scophthalmus maximus L.) larvae. Aquaculture255:323–333 [CrossRef]
    [Google Scholar]
  32. Rasmussen T., Jensen J., Anthoni U., Christophersen C., Nielsen P.. ( 1993;). Structure and synthesis of bromoindoles from the marine sponge Pseudosuberites hyalinus . J Nat Prod56:1553–1558 [CrossRef]
    [Google Scholar]
  33. Ruiz-Ponte C., Samain J. F., Sánchez J. L., Nicolas J. L.. ( 1999;). The benefit of a Roseobacter species on the survival of scallop larvae. Mar Biotechnol (NY)1:52–59 [CrossRef][PubMed]
    [Google Scholar]
  34. Shi X., Tang X., Li G., Wang C., Guan H.. ( 2009;). Studies on chemical constituents of gorgonian Muriceides collaris from the South China Sea. Chin J Mar Drugs28:18–21
    [Google Scholar]
  35. Sugita H., Matsuo N., Hirose Y., Iwato M., Deguchi Y.. ( 1997;). Vibrio sp. strain NM 10, isolated from the intestine of a Japanese coastal fish, has an inhibitory effect against Pasteurella piscicida . Appl Environ Microbiol63:4986–4989[PubMed]
    [Google Scholar]
  36. Wan L., Wang J., Yang S., Wang N.. ( 2006;). Antibacterial activity of intestinal bacterial in prawn (Litepenaeus vannamei). Shui Chan Ke Xue25:62–64
    [Google Scholar]
  37. Yamazaki K., Suzuki M., Kawai Y., Inoue N., Montville T. J.. ( 2003;). Inhibition of Listeria monocytogenes in cold-smoked salmon by Carnobacterium piscicola CS526 isolated from frozen surimi. J Food Prot66:1420–1425[PubMed]
    [Google Scholar]
  38. Yang H., Hou A., Jiang B., Lin Z., Sun H.. ( 2000;). Serratumin A, a novel compound from Clerodendrum serratum . Acta Botan Yunnan22:75–80
    [Google Scholar]
  39. Zheng L., Lin W., Yan X., Chen H.. ( 2004;). [A primary study on antimicrobial and cytotoxic activity of marine bacteria]. Ying Yong Sheng Tai Xue Bao15:1633–1636[PubMed]
    [Google Scholar]
  40. Zheng L., Chen H., Han X., Lin W., Yan X.. ( 2005;). Antimicrobial screening and active compound isolation from marine bacterium NJ6-3-1 associated with the sponge Hymeniacidon perleve . World J Microbiol Biotechnol21:201–206 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.055970-0
Loading
/content/journal/micro/10.1099/mic.0.055970-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error