1887

Abstract

Synthesis of spermidine involves the action of two enzymes, spermidine synthase (Spe) and -adenosylmethionine decarboxylase (Samdc). Previously we cloned and disrupted the gene encoding Spe as a first approach to unravel the biological function of spermidine in . With this background, the present study was designed to provide a better understanding of the role played by Samdc in the regulation of the synthesis of this polyamine. With this aim we proceeded to isolate and delete the gene encoding Samdc from , and made a comparative analysis of the phenotypes of and mutants. Both and mutants behaved as spermidine auxotrophs, and were more sensitive than the wild-type strain to different stress conditions. However, the two mutants displayed significant differences: in contrast to mutants, mutants were more sensitive to LiCl stress, high spermidine concentrations counteracted their dimorphic deficiency, and they were completely avirulent. It is suggested that these differences are possibly related to differences in exogenous spermidine uptake or the differential location of the respective enzymes in the cell. Alternatively, since mutants accumulate higher levels of -adenosylmethionine (SAM), whereas mutants accumulate decarboxylated SAM, the known opposite roles of these metabolites in the processes of methylation and differentiation offer an additional attractive hypothesis to explain the phenotypic differences of the two mutants, and provide insights into the additional roles of polyamine metabolism in the physiology of the cell.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.055954-0
2012-03-01
2022-01-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/3/674.html?itemId=/content/journal/micro/10.1099/mic.0.055954-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. ( 1997). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [View Article][PubMed]
    [Google Scholar]
  2. Balasundaram D., Tabor C. W., Tabor H. ( 1991). Spermidine or spermine is essential for the aerobic growth of Saccharomyces cerevisiae . Proc Natl Acad Sci U S A 88:5872–5876 [View Article][PubMed]
    [Google Scholar]
  3. Banuett F. ( 1992). Ustilago maydis, the delightful blight. Trends Genet 8:174–180[PubMed] [CrossRef]
    [Google Scholar]
  4. Banuett F. ( 1995). Genetics of Ustilago maydis, a fungal pathogen that induces tumors in maize. Annu Rev Genet 29:179–208 [View Article][PubMed]
    [Google Scholar]
  5. Banuett F., Herskowitz I. ( 1989). Different a alleles of Ustilago maydis are necessary for maintenance of filamentous growth but not for meiosis. Proc Natl Acad Sci U S A 86:5878–5882 [View Article][PubMed]
    [Google Scholar]
  6. Basse C. W., Steinberg G. ( 2004). Ustilago maydis, model system for analysis of the molecular basis of fungal pathogenicity. Mol Plant Pathol 5:83–92 [View Article][PubMed]
    [Google Scholar]
  7. Blasco J. L., García-Sánchez M. A., Ruiz-Herrera J., Eslava A. P., Iturriaga E. A. ( 2002). A gene coding for ornithine decarboxylase (odcA) is differentially expressed during the Mucor circinelloides yeast-to-hypha transition. Res Microbiol 153:155–164 [View Article][PubMed]
    [Google Scholar]
  8. Bölker M. ( 2001). Ustilago maydis – a valuable model system for the study of fungal dimorphism and virulence. Microbiology 147:1395–1401[PubMed]
    [Google Scholar]
  9. Chattopadhyay M. K., Park M. H., Tabor H. ( 2008). Hypusine modification for growth is the major function of spermidine in Saccharomyces cerevisiae polyamine auxotrophs grown in limiting spermidine. Proc Natl Acad Sci U S A 105:6554–6559 [View Article][PubMed]
    [Google Scholar]
  10. Chavez-Ontiveros J., Martinez-Espinoza A. D., Ruiz-Herrera J. ( 2000). Double chitin synthetase mutants from the corn smut fungus Ustilago maydis. . New Phytol 146:335–341 [View Article]
    [Google Scholar]
  11. Chiang P. K., Gordon R. K., Tal J., Zeng G. C., Doctor B. P., Pardhasaradhi K., McCann P. P. ( 1996). S-Adenosylmethionine and methylation. FASEB J 10:471–480[PubMed]
    [Google Scholar]
  12. Cohen S. S. ( 1998). A Guide to the Polyamines New York: Oxford University Press;
    [Google Scholar]
  13. Cohn M. S., Tabor C. W., Tabor H. ( 1978). Isolation and characterization of Saccharomyces cerevisiae mutants deficient in S-adenosylmethionine decarboxylase, spermidine, and spermine. J Bacteriol 134:208–213[PubMed]
    [Google Scholar]
  14. Da’dara A. A., Walter R. D. ( 1998). Molecular and biochemical characterization of S-adenosylmethionine decarboxylase from the free-living nematode Caenorhabditis elegans. . Biochem J 336:545–550[PubMed]
    [Google Scholar]
  15. Duranton B., Keith G., Gossé F., Bergmann C., Schleiffer R., Raul F. ( 1998). Concomitant changes in polyamine pools and DNA methylation during growth inhibition of human colonic cancer cells. Exp Cell Res 243:319–325 [View Article][PubMed]
    [Google Scholar]
  16. Fontecave M., Atta M., Mulliez E. ( 2004). S-Adenosylmethionine: nothing goes to waste. Trends Biochem Sci 29:243–249 [View Article][PubMed]
    [Google Scholar]
  17. Fotheringham S., Holloman W. K. ( 1989). Cloning and disruption of Ustilago maydis genes. Mol Cell Biol 9:4052–4055[PubMed]
    [Google Scholar]
  18. Fotheringham S., Holloman W. K. ( 1990). Pathways of transformation in Ustilago maydis determined by DNA conformation. Genetics 124:833–843[PubMed]
    [Google Scholar]
  19. Fraga M. F., Rodríguez R., Cañal M. J. ( 2002). Genomic DNA methylation-demethylation during aging and reinvigoration of Pinus radiata. . Tree Physiol 22:813–816[PubMed] [CrossRef]
    [Google Scholar]
  20. Frostesjö L., Holm I., Grahn B., Page A. W., Bestor T. H., Heby O. ( 1997). Interference with DNA methyltransferase activity and genome methylation during F9 teratocarcinoma stem cell differentiation induced by polyamine depletion. J Biol Chem 272:4359–4366 [View Article][PubMed]
    [Google Scholar]
  21. Fuso A., Cavallaro R. A., Orrù L., Buttarelli F. R., Scarpa S. ( 2001). Gene silencing by S-adenosylmethionine in muscle differentiation. FEBS Lett 508:337–340 [View Article][PubMed]
    [Google Scholar]
  22. Gill S. S., Tuteja N. ( 2010). Polyamines and abiotic stress tolerance in plants. Plant Signal Behav 5:26–33 [View Article][PubMed]
    [Google Scholar]
  23. Guevara-Olvera L., Calvo-Mendez C., Ruiz-Herrera J. ( 1993). The role of polyamine metabolism in dimorphism of Yarrowia lipolytica . J Gen Microbiol 139:485–493[PubMed] [CrossRef]
    [Google Scholar]
  24. Guevara-Olvera L., Xoconostle-Cázares B., Ruiz-Herrera J. ( 1997). Cloning and disruption of the ornithine decarboxylase gene of Ustilago maydis: evidence for a role of polyamines in its dimorphic transition. Microbiology 143:2237–2245 [View Article][PubMed]
    [Google Scholar]
  25. Hamasaki-Katagiri N., Tabor C. W., Tabor H. ( 1997). Spermidine biosynthesis in Saccharomyces cerevisae: polyamine requirement of a null mutant of the SPE3 gene (spermidine synthase). Gene 187:35–43 [View Article][PubMed]
    [Google Scholar]
  26. Herrero A. B., López M. C., García S., Schmidt A., Spaltmann F., Ruiz-Herrera J., Dominguez A. ( 1999). Control of filament formation in Candida albicans by polyamine levels. Infect Immun 67:4870–4878[PubMed]
    [Google Scholar]
  27. Hoffman C. S., Winston F. ( 1987). A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. . Gene 57:267–272 [View Article][PubMed]
    [Google Scholar]
  28. Holliday R. ( 1961). Genetics of Ustilago maydis. . Genet Res 2:204 [View Article]
    [Google Scholar]
  29. Holliday R. ( 1985). Aspects of DNA repair and nucleotide pool imbalance. Basic Life Sci 31:453–460[PubMed]
    [Google Scholar]
  30. Hoyt M. A., Williams-Abbott L. J., Pitkin J. W., Davis R. H. ( 2000). Cloning and expression of the S-adenosylmethionine decarboxylase gene of Neurospora crassa and processing of its product. Mol Gen Genet 263:664–673 [View Article][PubMed]
    [Google Scholar]
  31. Jiménez-Bremont J. F., Ruiz-Herrera J., Dominguez A. ( 2001). Disruption of gene YlODC reveals absolute requirement of polyamines for mycelial development in Yarrowia lipolytica. . FEMS Yeast Res 1:195–204[PubMed]
    [Google Scholar]
  32. Kämper J., Kahmann R., Bölker M., Ma L. J., Brefort T., Saville B. J., Banuett F., Kronstad J. W., Gold S. E. & other authors ( 2006). Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. . Nature 444:97–101 [View Article][PubMed]
    [Google Scholar]
  33. Kashiwagi K., Taneja S. K., Liu T. Y., Tabor C. W., Tabor H. ( 1990). Spermidine biosynthesis in Saccharomyces cerevisiae. Biosynthesis and processing of a proenzyme form of S-adenosylmethionine decarboxylase. J Biol Chem 265:22321–22328[PubMed]
    [Google Scholar]
  34. Klosterman S. J., Perlin M. H., Garcia-Pedrajas M., Covert S. F., Gold S. E. ( 2007). Genetics of morphogenesis and pathogenic development of Ustilago maydis. . Adv Genet 57:1–47 [View Article][PubMed]
    [Google Scholar]
  35. Kohlbacher O., Reinert K., Gröpl C., Lange E., Pfeifer N., Schulz-Trieglaff O., Sturm M. ( 2007). TOPP–the OpenMS proteomics pipeline.. Bioinformatics 23:e191–e197 [CrossRef]
    [Google Scholar]
  36. Kozbial P. Z., Mushegian A. R. ( 2005). Natural history of S-adenosylmethionine-binding proteins. BMC Struct Biol 5:19 [View Article][PubMed]
    [Google Scholar]
  37. Li Y. F., Hess S., Pannell L. K., White Tabor C., Tabor H. ( 2001). In vivo mechanism-based inactivation of S-adenosylmethionine decarboxylases from Escherichia coli, Salmonella typhimurium, and Saccharomyces cerevisiae. . Proc Natl Acad Sci U S A 98:10578–10583 [View Article][PubMed]
    [Google Scholar]
  38. Lieber C. S., Packer L. ( 2002). S-Adenosylmethionine: molecular, biological, and clinical aspects – an introduction. Am J Clin Nutr 76:1148S–1150S[PubMed]
    [Google Scholar]
  39. Loenen W. A. ( 2006). S-Adenosylmethionine: jack of all trades and master of everything?. Biochem Soc Trans 34:330–333 [View Article][PubMed]
    [Google Scholar]
  40. Lu S. C. ( 2000). S-Adenosylmethionine. Int J Biochem Cell Biol 32:391–395 [View Article][PubMed]
    [Google Scholar]
  41. Martínez-Espinoza A. D., León C., Elizarraraz G., Ruiz-Herrera J. ( 1997). Monomorphic nonpathogenic mutants of Ustilago maydis. . Phytopathology 87:259–265 [View Article][PubMed]
    [Google Scholar]
  42. Martínez-Pacheco M., Ruiz-Herrera J. ( 1993). Differential compartmentation of ornithine decarboxylase in cells of Mucor rouxii. . J Gen Microbiol 139:1387–1394 [CrossRef]
    [Google Scholar]
  43. Mato J. M., Alvarez L., Ortiz P., Pajares M. A. ( 1997). S-Adenosylmethionine synthesis: molecular mechanisms and clinical implications. Pharmacol Ther 73:265–280 [View Article][PubMed]
    [Google Scholar]
  44. Mayorga M. E., Gold S. E. ( 1998). Characterization and molecular genetic complementation of mutants affecting dimorphism in the fungus Ustilago maydis . Fungal Genet Biol 24:364–376 [View Article][PubMed]
    [Google Scholar]
  45. Nickerson K. W., Dunkle L. D., Van Etten J. L. ( 1977). Absence of spermine in filamentous fungi. J Bacteriol 129:173–176[PubMed]
    [Google Scholar]
  46. Nishimura K., Nakatsu F., Kashiwagi K., Ohno H., Saito T., Igarashi K. ( 2002). Essential role of S-adenosylmethionine decarboxylase in mouse embryonic development. Devoted Mol Cell Mechan 7:41–47 [View Article]
    [Google Scholar]
  47. Pegg A. E. ( 1986). Recent advances in the biochemistry of polyamines in eukaryotes. Biochem J 234:249–262[PubMed]
    [Google Scholar]
  48. Pegg A. E. ( 1988). Polyamine metabolism and its importance in neoplastic growth and a target for chemotherapy. Cancer Res 48:759–774[PubMed]
    [Google Scholar]
  49. Pegg A. E., McCann P. P. ( 1982). Polyamine metabolism and function. Am J Physiol 243:C212–C221[PubMed]
    [Google Scholar]
  50. Pegg A. E., Xiong H., Feith D. J., Shantz L. M. ( 1998). S-Adenosylmethionine decarboxylase: structure, function and regulation by polyamines. Biochem Soc Trans 26:580–586[PubMed]
    [Google Scholar]
  51. Pitkin J., Davis R. H. ( 1990). The genetics of polyamine synthesis in Neurospora crassa. . Arch Biochem Biophys 278:386–391 [View Article][PubMed]
    [Google Scholar]
  52. Roberts S. C., Scott J., Gasteier J. E., Jiang Y., Brooks B., Jardim A., Carter N. S., Heby O., Ullman B. ( 2002). S-Adenosylmethionine decarboxylase from Leishmania donovani. Molecular, genetic, and biochemical characterization of null mutants and overproducers. J Biol Chem 277:5902–5909 [View Article][PubMed]
    [Google Scholar]
  53. Ruiz-Herrera J. ( 1993). The role of polyamines in fungal cell differentiation. Arch Med Res 24:263–265[PubMed]
    [Google Scholar]
  54. Ruiz-Herrera J. ( 1994). Polyamines, DNA methylation, and fungal differentiation. Crit Rev Microbiol 20:143–150 [View Article][PubMed]
    [Google Scholar]
  55. Ruiz-Herrera J., Calvo-Méndez C. ( 1987). Effect of ornithine decarboxylase inhibitors on the germination of sporangiospores of mucorales. Exp Mycol 11:287–296 [View Article]
    [Google Scholar]
  56. Ruiz-Herrera J., León C. G., Guevara-Olvera L., Cárabez-Trejo A. ( 1995). Yeast–mycelial dimorphism of haploid and diploid strains of Ustilago maydis. . Microbiology 141:695–703 [View Article]
    [Google Scholar]
  57. Sambrook J., Russell D. ( 2001). Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  58. Sánchez-Martínez C., Pérez-Martín J. ( 2001). Dimorphism in fungal pathogens: Candida albicans and Ustilago maydis – similar inputs, different outputs. Curr Opin Microbiol 4:214–221 [View Article][PubMed]
    [Google Scholar]
  59. Scarpa S., Lucarelli M., Palitti F., Carotti D., Strom R. ( 1996). Simultaneous myogenin expression and overall DNA hypomethylation promote in vitro myoblast differentiation. Cell Growth Differ 7:1051–1058
    [Google Scholar]
  60. Schnier J., Schwelberger H. G., Smit-McBride Z., Kang H. A., Hershey J. W. ( 1991). Translation initiation factor 5A and its hypusine modification are essential for cell viability in the yeast Saccharomyces cerevisiae. . Mol Cell Biol 11:3105–3114[PubMed]
    [Google Scholar]
  61. Shantz L. M., Holm I., Jänne O. A., Pegg A. E. ( 1992). Regulation of S-adenosylmethionine decarboxylase activity by alterations in the intracellular polyamine content. Biochem J 288:511–518[PubMed]
    [Google Scholar]
  62. Shobayashi M., Mukai N., Iwashita K., Hiraga Y., Iefuji H. ( 2006). A new method for isolation of S-adenosylmethionine (SAM)-accumulating yeast. Appl Microbiol Biotechnol 69:704–710 [View Article][PubMed]
    [Google Scholar]
  63. Stanley B. A. ( 1995). Polyamines: Regulation and Molecular Interaction27–75 Casero R. A. Austin, TX: R. G. Landes Co;
    [Google Scholar]
  64. Stanley B. A., Pegg A. E. ( 1991). Amino acid residues necessary for putrescine stimulation of human S-adenosylmethionine decarboxylase proenzyme processing and catalytic activity. J Biol Chem 266:18502–18506[PubMed]
    [Google Scholar]
  65. Stanley B. A., Pegg A. E., Holm I. ( 1989). Site of pyruvate formation and processing of mammalian S-adenosylmethionine decarboxylase proenzyme. J Biol Chem 264:21073–21079[PubMed]
    [Google Scholar]
  66. Steinberg G., Pérez-Martín J. ( 2008). Ustilago maydis, a new fungal model system for cell biology. Trends Cell Biol 18:61–67 [View Article][PubMed]
    [Google Scholar]
  67. Stjernborg L., Heby O., Mamont P., Persson L. ( 1993). Polyamine-mediated regulation of S-adenosylmethionine decarboxylase expression in mammalian cells. Studies using 5′-([(Z)-4-amino-2-butenyl]methylamino)-5′-deoxyadenosine, a suicide inhibitor of the enzyme. Eur J Biochem 214:671–676 [View Article][PubMed]
    [Google Scholar]
  68. Sturm M., Bertsch A., Gröpl C., Hildebrandt A., Hussong R., Lange E., Pfeifer N., Schulz-Trieglaff O., Zerck A., other authors. ( 2008). OpenMS – an open-source software framework for mass spectrometry. BMC Bioinformatics 9:163 [CrossRef]
    [Google Scholar]
  69. Tabor C. W., Tabor H. ( 1984). Polyamines. Annu Rev Biochem 53:749–790 [View Article][PubMed]
    [Google Scholar]
  70. Tabor C. W., Tabor H. ( 1985). Polyamines in microorganisms. Microbiol Rev 49:81–99[PubMed]
    [Google Scholar]
  71. Tsukuda T., Carleton S., Fotheringham S., Holloman W. K. ( 1988). Isolation and characterization of an autonomously replicating sequence from Ustilago maydis. . Mol Cell Biol 8:3703–3709[PubMed]
    [Google Scholar]
  72. Valdés-Santiago L., Cervantes-Chávez J. A., Ruiz-Herrera J. ( 2009). Ustilago maydis spermidine synthase is encoded by a chimeric gene, required for morphogenesis, and indispensable for survival in the host. FEMS Yeast Res 9:923–935 [View Article][PubMed]
    [Google Scholar]
  73. Valdés-Santiago L., Guzmán-de-Peña D., Ruiz-Herrera J. ( 2010). Life without putrescine: disruption of the gene-encoding polyamine oxidase in Ustilago maydis odc mutants. FEMS Yeast Res 10:928–940 [View Article][PubMed]
    [Google Scholar]
  74. Xiong H., Pegg A. E. ( 1999). Mechanistic studies of the processing of human S-adenosylmethionine decarboxylase proenzyme. Isolation of an ester intermediate. J Biol Chem 274:35059–35066 [View Article][PubMed]
    [Google Scholar]
  75. Zanelli C. F., Valentini S. R. ( 2007). Is there a role for eIF5A in translation?. Amino Acids 33:351–358 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.055954-0
Loading
/content/journal/micro/10.1099/mic.0.055954-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error