1887

Abstract

The Gram-negative bacterium elaborates the siderophore legiobactin. We previously showed that cytoplasmic LbtA helps mediate legiobactin synthesis, inner-membrane LbtB promotes export of legiobactin, and outer-membrane LbtU acts as the ferrisiderophore receptor. RT-PCR analyses now identified as an iron-repressed gene that is the final gene in an operon containing and . analysis predicted that LbtC is an inner-membrane protein that belongs to the major facilitator superfamily (MFS). Although capable of normal growth in standard media, mutants were defective for growth on iron-depleted agar media. While producing normal levels of legiobactin, mutants were unable to utilize supplied legiobactin to stimulate growth on iron-depleted media and displayed an impaired ability to take up radiolabelled iron. All mutant phenotypes were complemented by reintroduction of an intact copy of . When a cloned copy of both and was introduced into a heterologous bacterium (), the organism acquired the ability to utilize legiobactin to grow better on low-iron media. Together, these data indicate that LbtC is involved in the uptake of legiobactin, and based upon its predicted location is most likely the mediator of ferrilegiobactin transport across the inner membrane. The data are also a unique documentation of how an MFS protein can promote bacterial iron-siderophore import, standing in contrast to the vast majority of studies which have defined ABC-type permeases as the mediators of siderophore import across the Gram-negative inner membrane or the Gram-positive cytoplasmic membrane.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.055533-0
2012-03-01
2020-08-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/3/721.html?itemId=/content/journal/micro/10.1099/mic.0.055533-0&mimeType=html&fmt=ahah

References

  1. Allard K. A., Viswanathan V. K., Cianciotto N. P.. ( 2006;). lbtA and lbtB are required for production of the Legionella pneumophila siderophore legiobactin. J Bacteriol188:1351–1363 [CrossRef][PubMed]
    [Google Scholar]
  2. Allard K. A., Dao J., Sanjeevaiah P., McCoy-Simandle K., Chatfield C. H., Crumrine D. S., Castignetti D., Cianciotto N. P.. ( 2009;). Purification of legiobactin and importance of this siderophore in lung infection by Legionella pneumophila . Infect Immun77:2887–2895 [CrossRef][PubMed]
    [Google Scholar]
  3. Bennett-Lovsey R. M., Herbert A. D., Sternberg M. J., Kelley L. A.. ( 2008;). Exploring the extremes of sequence/structure space with ensemble fold recognition in the program Phyre. Proteins70:611–625 [CrossRef][PubMed]
    [Google Scholar]
  4. Benson R. F., Thacker W. L., Wilkinson H. W., Fallon R. J., Brenner D. J.. ( 1988;). Legionella pneumophila serogroup 14 isolated from patients with fatal pneumonia. J Clin Microbiol26:382[PubMed]
    [Google Scholar]
  5. Benson H. P., Boncompagni E., Guerinot M. L.. ( 2005;). An iron uptake operon required for proper nodule development in the Bradyrhizobium japonicum-soybean symbiosis. Mol Plant Microbe Interact18:950–959 [CrossRef][PubMed]
    [Google Scholar]
  6. Bibb W. F., Arnow P. M., Dellinger D. L., Perryman S. R.. ( 1983;). Isolation and characterization of a seventh serogroup of Legionella pneumophila . J Clin Microbiol17:346–348[PubMed]
    [Google Scholar]
  7. Bissett M. L., Lee J. O., Lindquist D. S.. ( 1983;). New serogroup of Legionella pneumophila, serogroup 8. J Clin Microbiol17:887–891[PubMed]
    [Google Scholar]
  8. Brickman T. J., Armstrong S. K.. ( 2005;). Bordetella AlcS transporter functions in alcaligin siderophore export and is central to inducer sensing in positive regulation of alcaligin system gene expression. J Bacteriol187:3650–3661 [CrossRef][PubMed]
    [Google Scholar]
  9. Cazalet C., Rusniok C., Brüggemann H., Zidane N., Magnier A., Ma L., Tichit M., Jarraud S., Bouchier C.. & other authors ( 2004;). Evidence in the Legionella pneumophila genome for exploitation of host cell functions and high genome plasticity. Nat Genet36:1165–1173 [CrossRef][PubMed]
    [Google Scholar]
  10. Cazalet C., Gomez-Valero L., Rusniok C., Lomma M., Dervins-Ravault D., Newton H. J., Sansom F. M., Jarraud S., Zidane N.. & other authors ( 2010;). Analysis of the Legionella longbeachae genome and transcriptome uncovers unique strategies to cause Legionnaires’ disease. PLoS Genet6:e1000851 [CrossRef][PubMed]
    [Google Scholar]
  11. Chatfield C. H., Cianciotto N. P.. ( 2007;). The secreted pyomelanin pigment of Legionella pneumophila confers ferric reductase activity. Infect Immun75:4062–4070 [CrossRef][PubMed]
    [Google Scholar]
  12. Chatfield C. H., Mulhern B. J., Burnside D. M., Cianciotto N. P.. ( 2011;). Legionella pneumophila LbtU acts as a novel, TonB-independent receptor for the legiobactin siderophore. J Bacteriol193:1563–1575 [CrossRef][PubMed]
    [Google Scholar]
  13. Chien M., Morozova I., Shi S., Sheng H., Chen J., Gomez S. M., Asamani G., Hill K., Nuara J.. & other authors ( 2004;). The genomic sequence of the accidental pathogen Legionella pneumophila . Science305:1966–1968 [CrossRef][PubMed]
    [Google Scholar]
  14. Cianciotto N. P.. ( 2007;). Iron acquisition by Legionella pneumophila . Biometals20:323–331 [CrossRef][PubMed]
    [Google Scholar]
  15. Cianciotto N. P.. ( 2008a;). Iron assimilation and type II protein secretion. Legionella pneumophila: Pathogenesis and Immunity33–48 Hoffman P. S., Friedman H., Bendinelli M.. New York: Springer; [CrossRef]
    [Google Scholar]
  16. Cianciotto N. P.. ( 2008b;). Secretion and export in Legionella . Legionella Molecular Microbiology153–166 Huener K., Swanson M. S.. Norwich, UK: Horizon Biosciences;
    [Google Scholar]
  17. Cianciotto N. P., Bangsborg J. M., Eisenstein B. I., Engleberg N. C.. ( 1990;). Identification of mip-like genes in the genus Legionella . Infect Immun58:2912–2918[PubMed]
    [Google Scholar]
  18. Craun G. F., Brunkard J. M., Yoder J. S., Roberts V. A., Carpenter J., Wade T., Calderon R. L., Roberts J. M., Beach M. J., Roy S. L.. ( 2010;). Causes of outbreaks associated with drinking water in the United States from 1971 to 2006. Clin Microbiol Rev23:507–528 [CrossRef][PubMed]
    [Google Scholar]
  19. Cuív P. O., Clarke P., Lynch D., O’Connell M.. ( 2004;). Identification of rhtX and fptX, novel genes encoding proteins that show homology and function in the utilization of the siderophores rhizobactin 1021 by Sinorhizobium meliloti and pyochelin by Pseudomonas aeruginosa, respectively. J Bacteriol186:2996–3005 [CrossRef][PubMed]
    [Google Scholar]
  20. Cuív P. O., Keogh D., Clarke P., O’Connell M.. ( 2008;). The hmuUV genes of Sinorhizobium meliloti 2011 encode the permease and ATPase components of an ABC transport system for the utilization of both haem and the hydroxamate siderophores, ferrichrome and ferrioxamine B. Mol Microbiol70:1261–1273 [CrossRef][PubMed]
    [Google Scholar]
  21. D’Auria G., Jiménez-Hernández N., Peris-Bondia F., Moya A., Latorre A.. ( 2010;). Legionella pneumophila pangenome reveals strain-specific virulence factors. BMC Genomics11:181 [CrossRef][PubMed]
    [Google Scholar]
  22. Declerck P.. ( 2010;). Biofilms: the environmental playground of Legionella pneumophila . Environ Microbiol12:557–566 [CrossRef][PubMed]
    [Google Scholar]
  23. Deng K., Blick R. J., Liu W., Hansen E. J.. ( 2006;). Identification of Francisella tularensis genes affected by iron limitation. Infect Immun74:4224–4236 [CrossRef][PubMed]
    [Google Scholar]
  24. Diederen B. M.. ( 2008;). Legionella spp. and Legionnaires’ disease. J Infect56:1–12 [CrossRef][PubMed]
    [Google Scholar]
  25. Edelstein P. H., Cianciotto N. P.. ( 2010;). Legionella . Principles and Practice of Infectious Diseases, 7th edn.2969–2984 Mandell G. L., Bennett J. E., Dolin R.. Philadelphia: Elsevier Churchill Livingstone;
    [Google Scholar]
  26. Fetherston J. D., Kirillina O., Bobrov A. G., Paulley J. T., Perry R. D.. ( 2010;). The yersiniabactin transport system is critical for the pathogenesis of bubonic and pneumonic plague. Infect Immun78:2045–2052 [CrossRef][PubMed]
    [Google Scholar]
  27. Franza T., Mahé B., Expert D.. ( 2005;). Erwinia chrysanthemi requires a second iron transport route dependent of the siderophore achromobactin for extracellular growth and plant infection. Mol Microbiol55:261–275 [CrossRef][PubMed]
    [Google Scholar]
  28. Furrer J. L., Sanders D. N., Hook-Barnard I. G., McIntosh M. A.. ( 2002;). Export of the siderophore enterobactin in Escherichia coli: involvement of a 43 kDa membrane exporter. Mol Microbiol44:1225–1234 [CrossRef][PubMed]
    [Google Scholar]
  29. Garrity G. M., Elder E. M., Davis B., Vickers R. M., Brown A.. ( 1982;). Serological and genotypic diversity among serogroup 5-reacting environmental Legionella isolates. J Clin Microbiol15:646–653[PubMed]
    [Google Scholar]
  30. Glekas G. D., Foster R. M., Cates J. R., Estrella J. A., Wawrzyniak M. J., Rao C. V., Ordal G. W.. ( 2010;). A PAS domain binds asparagine in the chemotaxis receptor McpB in Bacillus subtilis . J Biol Chem285:1870–1878 [CrossRef][PubMed]
    [Google Scholar]
  31. Glöckner G., Albert-Weissenberger C., Weinmann E., Jacobi S., Schunder E., Steinert M., Hacker J., Heuner K.. ( 2008;). Identification and characterization of a new conjugation/type IVA secretion system (trb/tra) of Legionella pneumophila Corby localized on two mobile genomic islands. Int J Med Microbiol298:411–428 [CrossRef][PubMed]
    [Google Scholar]
  32. Haas H., Schoeser M., Lesuisse E., Ernst J. F., Parson W., Abt B., Winkelmann G., Oberegger H.. ( 2003;). Characterization of the Aspergillus nidulans transporters for the siderophores enterobactin and triacetylfusarinine C. Biochem J371:505–513 [CrossRef][PubMed]
    [Google Scholar]
  33. Hannauer M., Barda Y., Mislin G. L., Shanzer A., Schalk I. J.. ( 2010;). The ferrichrome uptake pathway in Pseudomonas aeruginosa involves an iron release mechanism with acylation of the siderophore and recycling of the modified desferrichrome. J Bacteriol192:1212–1220 [CrossRef][PubMed]
    [Google Scholar]
  34. Heymann P., Ernst J. F., Winkelmann G.. ( 2000;). A gene of the major facilitator superfamily encodes a transporter for enterobactin (Enb1p) in Saccharomyces cerevisiae . Biometals13:65–72 [CrossRef][PubMed]
    [Google Scholar]
  35. Hickey E. K., Cianciotto N. P.. ( 1994;). Cloning and sequencing of the Legionella pneumophila fur gene. Gene143:117–121 [CrossRef][PubMed]
    [Google Scholar]
  36. Hickey E. K., Cianciotto N. P.. ( 1997;). An iron- and Fur-repressed Legionella pneumophila gene that promotes intracellular infection and encodes a protein with similarity to the Escherichia coli aerobactin synthetases. Infect Immun65:133–143[PubMed]
    [Google Scholar]
  37. Kiss K., Liu W., Huntley J. F., Norgard M. V., Hansen E. J.. ( 2008;). Characterization of fig operon mutants of Francisella novicida U112. FEMS Microbiol Lett285:270–277 [CrossRef][PubMed]
    [Google Scholar]
  38. Koster W.. ( 2005;). Cytoplasmic membrane iron permease systems in the bacterial cell envelope. Front Biosci10:462–477 [CrossRef][PubMed]
    [Google Scholar]
  39. Kozak N. A., Buss M., Lucas C. E., Frace M., Govil D., Travis T., Olsen-Rasmussen M., Benson R. F., Fields B. S.. ( 2010;). Virulence factors encoded by Legionella longbeachae identified on the basis of the genome sequence analysis of clinical isolate D-4968. J Bacteriol192:1030–1044 [CrossRef][PubMed]
    [Google Scholar]
  40. Krewulak K. D., Vogel H. J.. ( 2008;). Structural biology of bacterial iron uptake. Biochim Biophys Acta1778:1781–1804 [CrossRef][PubMed]
    [Google Scholar]
  41. Lau H. Y., Ashbolt N. J.. ( 2009;). The role of biofilms and protozoa in Legionella pathogenesis: implications for drinking water. J Appl Microbiol107:368–378 [CrossRef][PubMed]
    [Google Scholar]
  42. Law C. J., Maloney P. C., Wang D. N.. ( 2008;). Ins and outs of major facilitator superfamily antiporters. Annu Rev Microbiol62:289–305 [CrossRef][PubMed]
    [Google Scholar]
  43. Lesuisse E., Simon-Casteras M., Labbe P.. ( 1998;). Siderophore-mediated iron uptake in Saccharomyces cerevisiae: the SIT1 gene encodes a ferrioxamine B permease that belongs to the major facilitator superfamily. Microbiology144:3455–3462 [CrossRef][PubMed]
    [Google Scholar]
  44. Liles M. R., Viswanathan V. K., Cianciotto N. P.. ( 1998;). Identification and temperature regulation of Legionella pneumophila genes involved in type IV pilus biogenesis and type II protein secretion. Infect Immun66:1776–1782[PubMed]
    [Google Scholar]
  45. Liles M. R., Scheel T. A., Cianciotto N. P.. ( 2000;). Discovery of a nonclassical siderophore, legiobactin, produced by strains of Legionella pneumophila . J Bacteriol182:749–757 [CrossRef][PubMed]
    [Google Scholar]
  46. Lindquist D. S., Nygaard G., Thacker W. L., Benson R. F., Brenner D. J., Wilkinson H. W.. ( 1988;). Thirteenth serogroup of Legionella pneumophila isolated from patients with pneumonia. J Clin Microbiol26:586–587[PubMed]
    [Google Scholar]
  47. McCoy-Simandle K., Stewart C. R., Dao J., DebRoy S., Rossier O., Bryce P. J., Cianciotto N. P.. ( 2011;). Legionella pneumophila type II secretion dampens the cytokine response of infected macrophages and epithelia. Infect Immun79:1984–1997 [CrossRef][PubMed]
    [Google Scholar]
  48. McKinney R. M., Thacker L., Harris P. P., Lewallen K. R., Hebert G. A., Edelstein P. H., Thomason B. M.. ( 1979;). Four serogroups of Legionnaires’ disease bacteria defined by direct immunofluorescence. Ann Intern Med90:621–624[PubMed][CrossRef]
    [Google Scholar]
  49. McKinney R. M., Porschen R. K., Edelstein P. H., Bissett M. L., Harris P. P., Bondell S. P., Steigerwalt A. G., Weaver R. E., Ein M. E.. & other authors ( 1981;). Legionella longbeachae species nova, another etiologic agent of human pneumonia. Ann Intern Med94:739–743[PubMed][CrossRef]
    [Google Scholar]
  50. Michel L., Bachelard A., Reimmann C.. ( 2007;). Ferripyochelin uptake genes are involved in pyochelin-mediated signalling in Pseudomonas aeruginosa . Microbiology153:1508–1518 [CrossRef][PubMed]
    [Google Scholar]
  51. Miethke M., Schmidt S., Marahiel M. A.. ( 2008;). The major facilitator superfamily-type transporter YmfE and the multidrug-efflux activator Mta mediate bacillibactin secretion in Bacillus subtilis . J Bacteriol190:5143–5152 [CrossRef][PubMed]
    [Google Scholar]
  52. Moore R. E., Kim Y., Philpott C. C.. ( 2003;). The mechanism of ferrichrome transport through Arn1p and its metabolism in Saccharomyces cerevisiae . Proc Natl Acad Sci U S A100:5664–5669 [CrossRef][PubMed]
    [Google Scholar]
  53. Naylor J., Cianciotto N. P.. ( 2004;). Cytochrome c maturation proteins are critical for in vivo growth of Legionella pneumophila . FEMS Microbiol Lett241:249–256 [CrossRef][PubMed]
    [Google Scholar]
  54. Newton H. J., Ang D. K., van Driel I. R., Hartland E. L.. ( 2010;). Molecular pathogenesis of infections caused by Legionella pneumophila . Clin Microbiol Rev23:274–298 [CrossRef][PubMed]
    [Google Scholar]
  55. Page W. J., Kwon E., Cornish A. S., Tindale A. E.. ( 2003;). The csbX gene of Azotobacter vinelandii encodes an MFS efflux pump required for catecholate siderophore export. FEMS Microbiol Lett228:211–216 [CrossRef][PubMed]
    [Google Scholar]
  56. Pagnier I., Merchat M., La Scola B.. ( 2009;). Potentially pathogenic amoeba-associated microorganisms in cooling towers and their control. Future Microbiol4:615–629 [CrossRef][PubMed]
    [Google Scholar]
  57. Pao S. S., Paulsen I. T., Saier M. H. Jr. ( 1998;). Major facilitator superfamily. Microbiol Mol Biol Rev62:1–34[PubMed]
    [Google Scholar]
  58. Paulsen I. T., Brown M. H., Skurray R. A.. ( 1996;). Proton-dependent multidrug efflux systems. Microbiol Rev60:575–608[PubMed]
    [Google Scholar]
  59. Pearce M. M., Cianciotto N. P.. ( 2009;). Legionella pneumophila secretes an endoglucanase that belongs to the family-5 of glycosyl hydrolases and is dependent upon type II secretion. FEMS Microbiol Lett300:256–264 [CrossRef][PubMed]
    [Google Scholar]
  60. Pope C. D., O’Connell W., Cianciotto N. P.. ( 1996;). Legionella pneumophila mutants that are defective for iron acquisition and assimilation and intracellular infection. Infect Immun64:629–636[PubMed]
    [Google Scholar]
  61. Rees D. C., Johnson E., Lewinson O.. ( 2009;). ABC transporters: the power to change. Nat Rev Mol Cell Biol10:218–227 [CrossRef][PubMed]
    [Google Scholar]
  62. Robey M., Cianciotto N. P.. ( 2002;). Legionella pneumophila feoAB promotes ferrous iron uptake and intracellular infection. Infect Immun70:5659–5669 [CrossRef][PubMed]
    [Google Scholar]
  63. Rossier O., Starkenburg S. R., Cianciotto N. P.. ( 2004;). Legionella pneumophila type II protein secretion promotes virulence in the A/J mouse model of Legionnaires’ disease pneumonia. Infect Immun72:310–321 [CrossRef][PubMed]
    [Google Scholar]
  64. Rossier O., Dao J., Cianciotto N. P.. ( 2008;). The type II secretion system of Legionella pneumophila elaborates two aminopeptidases, as well as a metalloprotease that contributes to differential infection among protozoan hosts. Appl Environ Microbiol74:753–761 [CrossRef][PubMed]
    [Google Scholar]
  65. Saier M. H. Jr, Beatty J. T., Goffeau A., Harley K. T., Heijne W. H., Huang S. C., Jack D. L., Jähn P. S., Lew K.. & other authors ( 1999;). The major facilitator superfamily. J Mol Microbiol Biotechnol1:257–279[PubMed]
    [Google Scholar]
  66. Schroeder G. N., Petty N. K., Mousnier A., Harding C. R., Vogrin A. J., Wee B., Fry N. K., Harrison T. G., Newton H. J.. & other authors ( 2010;). Legionella pneumophila strain 130b possesses a unique combination of type IV secretion systems and novel Dot/Icm secretion system effector proteins. J Bacteriol192:6001–6016 [CrossRef][PubMed]
    [Google Scholar]
  67. Starkenburg S. R., Casey J. M., Cianciotto N. P.. ( 2004;). Siderophore activity among members of the Legionella genus. Curr Microbiol49:203–207 [CrossRef][PubMed]
    [Google Scholar]
  68. Sullivan J. T., Jeffery E. F., Shannon J. D., Ramakrishnan G.. ( 2006;). Characterization of the siderophore of Francisella tularensis and role of fslA in siderophore production. J Bacteriol188:3785–3795 [CrossRef][PubMed]
    [Google Scholar]
  69. Tanabe T., Nakao H., Kuroda T., Tsuchiya T., Yamamoto S.. ( 2006;). Involvement of the Vibrio parahaemolyticus pvsC gene in export of the siderophore vibrioferrin. Microbiol Immunol50:871–876[PubMed]
    [Google Scholar]
  70. Taylor M., Ross K., Bentham R.. ( 2009;). Legionella, protozoa, and biofilms: interactions within complex microbial systems. Microb Ecol58:538–547 [CrossRef][PubMed]
    [Google Scholar]
  71. Vajrala N., Sayavedra-Soto L. A., Bottomley P. J., Arp D. J.. ( 2010;). Role of Nitrosomonas europaea NitABC iron transporter in the uptake of Fe3+-siderophore complexes. Arch Microbiol192:899–908 [CrossRef][PubMed]
    [Google Scholar]
  72. Viswanathan V. K., Edelstein P. H., Pope C. D., Cianciotto N. P.. ( 2000;). The Legionella pneumophila iraAB locus is required for iron assimilation, intracellular infection, and virulence. Infect Immun68:1069–1079 [CrossRef][PubMed]
    [Google Scholar]
  73. Viswanathan V. K., Kurtz S., Pedersen L. L., Abu-Kwaik Y., Krcmarik K., Mody S., Cianciotto N. P.. ( 2002;). The cytochrome c maturation locus of Legionella pneumophila promotes iron assimilation and intracellular infection and contains a strain-specific insertion sequence element. Infect Immun70:1842–1852 [CrossRef][PubMed]
    [Google Scholar]
  74. Yip E. S., Burnside D. M., Cianciotto N. P.. ( 2011;). Cytochrome c 4 is required for siderophore expression by Legionella pneumophila, whereas cytochromes c 1 and c 5 promote intracellular infection. Microbiology157:868–878 [CrossRef][PubMed]
    [Google Scholar]
  75. Yun C. W., Ferea T., Rashford J., Ardon O., Brown P. O., Botstein D., Kaplan J., Philpott C. C.. ( 2000;). Desferrioxamine-mediated iron uptake in Saccharomyces cerevisiae. Evidence for two pathways of iron uptake. J Biol Chem275:10709–10715 [CrossRef][PubMed]
    [Google Scholar]
  76. Zhang Y.. ( 2008;). I-TASSER server for protein 3D structure prediction. BMC Bioinformatics9:40 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.055533-0
Loading
/content/journal/micro/10.1099/mic.0.055533-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error