1887

Abstract

Dominant selectable markers, reporter genes and regulatable systems remain powerful molecular tools for genetic and cell biology studies in fungi. Among , it is currently accepted that most species belonging to the genus have adopted a specific codon usage, whereby the CTG codon encodes serine instead of leucine. This group is now widely referred to as the CTG clade. For a long time, this uncommon genetic code has precluded the use of the available or bacterial markers and reporter systems for genetic studies in species. Over the last 15 years, increasing effort has been made to adapt drug-resistance markers, fluorescent protein variants, luciferase and recombinase genes to favour their expression in species related to the yeast CTG clade. In addition to the growing set of genome sequences, these codon-optimized molecular tools have progressively opened a window for the investigation of the conservation of gene function within species. These technical advances will also facilitate future genetic studies in non- (NAC) species and will help both in elucidating the molecular events underlying pathogenicity and antifungal resistance and in exploring the potential of yeast metabolic engineering.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.055244-0
2012-03-01
2020-08-04
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/3/585.html?itemId=/content/journal/micro/10.1099/mic.0.055244-0&mimeType=html&fmt=ahah

References

  1. Akinterinwa O., Khankal R., Cirino P. C.. ( 2008;). Metabolic engineering for bioproduction of sugar alcohols. Curr Opin Biotechnol19:461–467 [CrossRef][PubMed]
    [Google Scholar]
  2. Austin S., Ziese M., Sternberg N.. ( 1981;). A novel role for site-specific recombination in maintenance of bacterial replicons. Cell25:729–736 [CrossRef][PubMed]
    [Google Scholar]
  3. Basso L. R. Jr, Bartiss A., Mao Y., Gast C. E., Coelho P. S., Snyder M., Wong B.. ( 2010;). Transformation of Candida albicans with a synthetic hygromycin B resistance gene. Yeast27:1039–1048 [CrossRef][PubMed]
    [Google Scholar]
  4. Becker J. M., Kauffman S. J., Hauser M., Huang L., Lin M., Sillaots S., Jiang B., Xu D., Roemer T.. ( 2010;). Pathway analysis of Candida albicans survival and virulence determinants in a murine infection model. Proc Natl Acad Sci U S A107:22044–22049 [CrossRef][PubMed]
    [Google Scholar]
  5. Beckerman J., Chibana H., Turner J., Magee P. T.. ( 2001;). Single-copy IMH3 allele is sufficient to confer resistance to mycophenolic acid in Candida albicans and to mediate transformation of clinical Candida species. Infect Immun69:108–114 [CrossRef][PubMed]
    [Google Scholar]
  6. Bernardo S. M., Khalique Z., Kot J., Jones J. K., Lee S. A.. ( 2008;). Candida albicans VPS1 contributes to protease secretion, filamentation, and biofilm formation. Fungal Genet Biol45:861–877 [CrossRef][PubMed]
    [Google Scholar]
  7. Boeke J. D., LaCroute F., Fink G. R.. ( 1984;). A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol Gen Genet197:345–346 [CrossRef][PubMed]
    [Google Scholar]
  8. Buchholz F., Angrand P. O., Stewart A. F.. ( 1998;). Improved properties of FLP recombinase evolved by cycling mutagenesis. Nat Biotechnol16:657–662 [CrossRef][PubMed]
    [Google Scholar]
  9. Butler G., Rasmussen M. D., Lin M. F., Santos M. A., Sakthikumar S., Munro C. A., Rheinbay E., Grabherr M., Forche A.. & other authors ( 2009;). Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature459:657–662 [CrossRef][PubMed]
    [Google Scholar]
  10. Carlisle P. L., Banerjee M., Lazzell A., Monteagudo C., López-Ribot J. L., Kadosh D.. ( 2009;). Expression levels of a filament-specific transcriptional regulator are sufficient to determine Candida albicans morphology and virulence. Proc Natl Acad Sci U S A106:599–604 [CrossRef][PubMed]
    [Google Scholar]
  11. Cheon S. A., Han E. J., Kang H. A., Ogrydziak D. M., Kim J. Y.. ( 2003;). Isolation and characterization of the TRP1 gene from the yeast Yarrowia lipolytica and multiple gene disruption using a TRP blaster. Yeast20:677–685 [CrossRef][PubMed]
    [Google Scholar]
  12. Cheon S. A., Choo J., Ubiyvovk V. M., Park J. N., Kim M. W., Oh D. B., Kwon O., Sibirny A. A., Kim J. Y., Kang H. A.. ( 2009;). New selectable host-marker systems for multiple genetic manipulations based on TRP1, MET2 and ADE2 in the methylotrophic yeast Hansenula polymorpha . Yeast26:507–521 [CrossRef][PubMed]
    [Google Scholar]
  13. Cormack B. P., Valdivia R. H., Falkow S.. ( 1996;). FACS-optimized mutants of the green fluorescent protein (GFP). Gene173:1 Spec No33–38 [CrossRef][PubMed]
    [Google Scholar]
  14. Cormack B. P., Bertram G., Egerton M., Gow N. A., Falkow S., Brown A. J. P.. ( 1997;). Yeast-enhanced green fluorescent protein (yEGFP): a reporter of gene expression in Candida albicans . Microbiology143:303–311 [CrossRef][PubMed]
    [Google Scholar]
  15. Courdavault V., Millerioux Y., Clastre M., Simkin A. J., Marais E., Crèche J., Giglioli-Guivarc’h N., Papon N.. ( 2011;). Fluorescent protein fusions in Candida guilliermondii . Fungal Genet Biol48:1004–1011 [CrossRef][PubMed]
    [Google Scholar]
  16. d’Enfert C., Vecchiarelli A., Brown A. J.. ( 2010;). Bioluminescent fungi for real-time monitoring of fungal infections. Virulence1:174–176 [CrossRef][PubMed]
    [Google Scholar]
  17. Delbrück S., Ernst J. F.. ( 1993;). Morphogenesis-independent regulation of actin transcript levels in the pathogenic yeast Candida albicans . Mol Microbiol10:859–866 [CrossRef][PubMed]
    [Google Scholar]
  18. Dennison P. M., Ramsdale M., Manson C. L., Brown A. J.. ( 2005;). Gene disruption in Candida albicans using a synthetic, codon-optimised Cre-loxP system. Fungal Genet Biol42:737–748 [CrossRef][PubMed]
    [Google Scholar]
  19. Ding C., Butler G.. ( 2007;). Development of a gene knockout system in Candida parapsilosis reveals a conserved role for BCR1 in biofilm formation. Eukaryot Cell6:1310–1319 [CrossRef][PubMed]
    [Google Scholar]
  20. Dmytruk K. V., Voronovsky A. Y., Sibirny A. A.. ( 2006;). Insertion mutagenesis of the yeast Candida famata (Debaryomyces hansenii) by random integration of linear DNA fragments. Curr Genet50:183–191 [CrossRef][PubMed]
    [Google Scholar]
  21. Dmytruk K. V., Yatsyshyn V. Y., Sybirna N. O., Fedorovych D. V., Sibirny A. A.. ( 2011;). Metabolic engineering and classic selection of the yeast Candida famata (Candida flareri) for construction of strains with enhanced riboflavin production. Metab Eng13:82–88 [CrossRef][PubMed]
    [Google Scholar]
  22. Doyle T. C., Nawotka K. A., Purchio A. F., Akin A. R., Francis K. P., Contag P. R.. ( 2006a;). Expression of firefly luciferase in Candida albicans and its use in the selection of stable transformants. Microb Pathog40:69–81 [CrossRef][PubMed]
    [Google Scholar]
  23. Doyle T. C., Nawotka K. A., Kawahara C. B., Francis K. P., Contag P. R.. ( 2006b;). Visualizing fungal infections in living mice using bioluminescent pathogenic Candida albicans strains transformed with the firefly luciferase gene. Microb Pathog40:82–90 [CrossRef][PubMed]
    [Google Scholar]
  24. Enjalbert B., Rachini A., Vediyappan G., Pietrella D., Spaccapelo R., Vecchiarelli A., Brown A. J., d’Enfert C.. ( 2009;). A multifunctional, synthetic Gaussia princeps luciferase reporter for live imaging of Candida albicans infections. Infect Immun77:4847–4858 [CrossRef][PubMed]
    [Google Scholar]
  25. Fitzpatrick D. A., Logue M. E., Stajich J. E., Butler G.. ( 2006;). A fungal phylogeny based on 42 complete genomes derived from supertree and combined gene analysis. BMC Evol Biol6:99 [CrossRef][PubMed]
    [Google Scholar]
  26. Fitzpatrick D. A., Logue M. E., Butler G.. ( 2008;). Evidence of recent interkingdom horizontal gene transfer between bacteria and Candida parapsilosis . BMC Evol Biol8:181 [CrossRef][PubMed]
    [Google Scholar]
  27. Fitzpatrick D. A., O’Gaora P., Byrne K. P., Butler G.. ( 2010;). Analysis of gene evolution and metabolic pathways using the Candida Gene Order Browser. BMC Genomics11:290[PubMed][CrossRef]
    [Google Scholar]
  28. Gácser A., Salomon S., Schäfer W.. ( 2005;). Direct transformation of a clinical isolate of Candida parapsilosis using a dominant selection marker. FEMS Microbiol Lett245:117–121 [CrossRef][PubMed]
    [Google Scholar]
  29. Gácser A., Trofa D., Schäfer W., Nosanchuk J. D.. ( 2007;). Targeted gene deletion in Candida parapsilosis demonstrates the role of secreted lipase in virulence. J Clin Invest117:3049–3058 [CrossRef][PubMed]
    [Google Scholar]
  30. Gerami-Nejad M., Berman J., Gale C. A.. ( 2001;). Cassettes for PCR-mediated construction of green, yellow, and cyan fluorescent protein fusions in Candida albicans . Yeast18:859–864 [CrossRef][PubMed]
    [Google Scholar]
  31. Gerami-Nejad M., Hausauer D., McClellan M., Berman J., Gale C.. ( 2004;). Cassettes for the PCR-mediated construction of regulatable alleles in Candida albicans . Yeast21:429–436 [CrossRef][PubMed]
    [Google Scholar]
  32. Gerami-Nejad M., Dulmage K., Berman J.. ( 2009;). Additional cassettes for epitope and fluorescent fusion proteins in Candida albicans . Yeast26:399–406 [CrossRef][PubMed]
    [Google Scholar]
  33. Gola S., Martin R., Walther A., Dünkler A., Wendland J.. ( 2003;). New modules for PCR-based gene targeting in Candida albicans: rapid and efficient gene targeting using 100 bp of flanking homology region. Yeast20:1339–1347 [CrossRef][PubMed]
    [Google Scholar]
  34. Gossen M., Bonin A. L., Bujard H.. ( 1993;). Control of gene activity in higher eukaryotic cells by prokaryotic regulatory elements. Trends Biochem Sci18:471–475 [CrossRef][PubMed]
    [Google Scholar]
  35. Hara A., Ueda M., Misawa S., Matsui T., Furuhashi K., Tanaka A.. ( 2000;). A mutated hygromycin resistance gene is functional in the n-alkane-assimilating yeast Candida tropicalis . Arch Microbiol173:187–192 [CrossRef][PubMed]
    [Google Scholar]
  36. Hara A., Arie M., Kanai T., Matsui T., Matsuda H., Furuhashi K., Ueda M., Tanaka A.. ( 2001;). Novel and convenient methods for Candida tropicalis gene disruption using a mutated hygromycin B resistance gene. Arch Microbiol176:364–369 [CrossRef][PubMed]
    [Google Scholar]
  37. Heim R., Tsien R. Y.. ( 1996;). Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Curr Biol6:178–182 [CrossRef][PubMed]
    [Google Scholar]
  38. Jones E. W., Berget P. B., Burnette J. M. III, Anderson C., Asafu-Adjei D., Avetisian S., Barrie F., Chen R., Chu B.. & other authors ( 2008;). The spectrum of Trp mutants isolated as 5-fluoroanthranilate-resistant clones in Saccharomyces bayanus, S. mikatae and S. paradoxus . Yeast25:41–46 [CrossRef][PubMed]
    [Google Scholar]
  39. Kakar S. N., Magee P. T.. ( 1982;). Genetic analysis of Candida albicans: identification of different isoleucine-valine, methionine, and arginine alleles by complementation. J Bacteriol151:1247–1252[PubMed]
    [Google Scholar]
  40. Kawaguchi Y., Honda H., Taniguchi-Morimura J., Iwasaki S.. ( 1989;). The codon CUG is read as serine in an asporogenic yeast Candida cylindracea . Nature341:164–166 [CrossRef][PubMed]
    [Google Scholar]
  41. Keppler-Ross S., Noffz C., Dean N.. ( 2008;). A new purple fluorescent color marker for genetic studies in Saccharomyces cerevisiae and Candida albicans . Genetics179:705–710 [CrossRef][PubMed]
    [Google Scholar]
  42. Köhler G. A., White T. C., Agabian N.. ( 1997;). Overexpression of a cloned IMP dehydrogenase gene of Candida albicans confers resistance to the specific inhibitor mycophenolic acid. J Bacteriol179:2331–2338[PubMed]
    [Google Scholar]
  43. Köhler G. A., Gong X., Bentink S., Theiss S., Pagani G. M., Agabian N., Hedstrom L.. ( 2005;). The functional basis of mycophenolic acid resistance in Candida albicans IMP dehydrogenase. J Biol Chem280:11295–11302 [CrossRef][PubMed]
    [Google Scholar]
  44. Kosa P., Gavenciakova B., Nosek J.. ( 2007;). Development of a set of plasmid vectors for genetic manipulations of the pathogenic yeast Candida parapsilosis . Gene396:338–345 [CrossRef][PubMed]
    [Google Scholar]
  45. Kur K., Gabriel I., Morschhäuser J., Barchiesi F., Spreghini E., Milewski S.. ( 2010;). Disruption of homocitrate synthase genes in Candida albicans affects growth but not virulence. Mycopathologia170:397–402 [CrossRef][PubMed]
    [Google Scholar]
  46. Laplaza J. M., Rivas Torres B., Jin Y.-S., Jeffries T. W.. ( 2006;). Sh ble and Cre adapted for functional genomics and metabolic engineering of Pichia stipitis . Enzyme Microb Technol38:741–747 [CrossRef]
    [Google Scholar]
  47. Lebel K., MacPherson S., Turcotte B.. ( 2006;). New tools for phenotypic analysis in Candida albicans: the WAR1 gene confers resistance to sorbate. Yeast23:249–259 [CrossRef][PubMed]
    [Google Scholar]
  48. Leuker C. E., Hahn A. M., Ernst J. F.. ( 1992;). β-Galactosidase of Kluyveromyces lactis (Lac4p) as reporter of gene expression in Candida albicans and C. tropicalis . Mol Gen Genet235:235–241 [CrossRef][PubMed]
    [Google Scholar]
  49. Leuker C. E., Sonneborn A., Delbrück S., Ernst J. F.. ( 1997;). Sequence and promoter regulation of the PCK1 gene encoding phosphoenolpyruvate carboxykinase of the fungal pathogen Candida albicans . Gene192:235–240 [CrossRef][PubMed]
    [Google Scholar]
  50. Li D., Gurkovska V., Sheridan M., Calderone R., Chauhan N.. ( 2004;). Studies on the regulation of the two-component histidine kinase gene CHK1 in Candida albicans using the heterologous lacZ reporter gene. Microbiology150:3305–3313 [CrossRef][PubMed]
    [Google Scholar]
  51. Masuda Y., Park S. M., Ohkuma M., Ohta A., Takagi M.. ( 1994;). Expression of an endogenous and a heterologous gene in Candida maltosa by using a promoter of a newly-isolated phosphoglycerate kinase (PGK) gene. Curr Genet25:412–417 [CrossRef][PubMed]
    [Google Scholar]
  52. Melo N. R., Moran G. P., Warrilow A. G., Dudley E., Smith S. N., Sullivan D. J., Lamb D. C., Kelly D. E., Coleman D. C., Kelly S. L.. ( 2008;). CYP56 (Dit2p) in Candida albicans: characterization and investigation of its role in growth and antifungal drug susceptibility. Antimicrob Agents Chemother52:3718–3724 [CrossRef][PubMed]
    [Google Scholar]
  53. Michel S., Ushinsky S., Klebl B., Leberer E., Thomas D., Whiteway M., Morschhäuser J.. ( 2002;). Generation of conditional lethal Candida albicans mutants by inducible deletion of essential genes. Mol Microbiol46:269–280 [CrossRef][PubMed]
    [Google Scholar]
  54. Millerioux Y., Clastre M., Simkin A. J., Courdavault V., Marais E., Sibirny A. A., Noël T., Crèche J., Giglioli-Guivarc’h N., Papon N.. ( 2011;). Drug-resistant cassettes for the efficient transformation of Candida guilliermondii wild-type strains. FEM Yeast Res11:457–463 [CrossRef][PubMed]
    [Google Scholar]
  55. Milne S. W., Cheetham J., Lloyd D., Aves S., Bates S.. ( 2011;). Cassettes for PCR-mediated gene tagging in Candida albicans utilizing nourseothricin resistance. Yeast28:833–841 [CrossRef][PubMed]
    [Google Scholar]
  56. Moreno-Ruiz E., Ortu G., de Groot P. W., Cottier F., Loussert C., Prévost M. C., de Koster C., Klis F. M., Goyard S., d’Enfert C.. ( 2009;). The GPI-modified proteins Pga59 and Pga62 of Candida albicans are required for cell wall integrity. Microbiology155:2004–2020 [CrossRef][PubMed]
    [Google Scholar]
  57. Morschhäuser J., Michel S., Hacker J.. ( 1998;). Expression of a chromosomally integrated, single-copy GFP gene in Candida albicans, and its use as a reporter of gene regulation. Mol Gen Genet257:412–420 [CrossRef][PubMed]
    [Google Scholar]
  58. Morschhäuser J., Michel S., Staib P.. ( 1999;). Sequential gene disruption in Candida albicans by FLP-mediated site-specific recombination. Mol Microbiol32:547–556 [CrossRef][PubMed]
    [Google Scholar]
  59. Morschhäuser J., Staib P., Köhler G.. ( 2005;). Targeted gene deletion in Candida albicans wild-type strains by MPAR flipping. Methods Mol Med118:35–44[PubMed]
    [Google Scholar]
  60. Nakayama H., Mio T., Nagahashi S., Kokado M., Arisawa M., Aoki Y.. ( 2000;). Tetracycline-regulatable system to tightly control gene expression in the pathogenic fungus Candida albicans . Infect Immun68:6712–6719 [CrossRef][PubMed]
    [Google Scholar]
  61. Nguyen L. N., Trofa D., Nosanchuk J. D.. ( 2009;). Fatty acid synthase impacts the pathobiology of Candida parapsilosis in vitro and during mammalian infection. PLoS ONE4:e8421 [CrossRef][PubMed]
    [Google Scholar]
  62. Nunes-Düby S. E., Kwon H. J., Tirumalai R. S., Ellenberger T., Landy A.. ( 1998;). Similarities and differences among 105 members of the Int family of site-specific recombinases. Nucleic Acids Res26:391–406 [CrossRef][PubMed]
    [Google Scholar]
  63. Ohama T., Suzuki T., Mori M., Osawa S., Ueda T., Watanabe K., Nakase T.. ( 1993;). Non-universal decoding of the leucine codon CUG in several Candida species. Nucleic Acids Res21:4039–4045 [CrossRef][PubMed]
    [Google Scholar]
  64. Park Y. N., Morschhäuser J.. ( 2005;). Tetracycline-inducible gene expression and gene deletion in Candida albicans . Eukaryot Cell4:1328–1342 [CrossRef][PubMed]
    [Google Scholar]
  65. Passoth V., Cohn M., Schäfer B., Hahn-Hägerdal B., Klinner U.. ( 2003;). Analysis of the hypoxia-induced ADH2 promoter of the respiratory yeast Pichia stipitis reveals a new mechanism for sensing of oxygen limitation in yeast. Yeast20:39–51 [CrossRef][PubMed]
    [Google Scholar]
  66. Ramsdale M., Selway L., Stead D., Walker J., Yin Z., Nicholls S. M., Crowe J., Sheils E. M., Brown A. J.. ( 2008;). MNL1 regulates weak acid-induced stress responses of the fungal pathogen Candida albicans . Mol Biol Cell19:4393–4403 [CrossRef][PubMed]
    [Google Scholar]
  67. Reijnst P., Walther A., Wendland J.. ( 2011;). Dual-colour fluorescence microscopy using yEmCherry-/GFP-tagging of eisosome components Pil1 and Lsp1 in Candida albicans . Yeast28:331–338 [CrossRef][PubMed]
    [Google Scholar]
  68. Reuss O., Vik A., Kolter R., Morschhäuser J.. ( 2004;). The SAT1 flipper, an optimized tool for gene disruption in Candida albicans . Gene341:119–127 [CrossRef][PubMed]
    [Google Scholar]
  69. Roemer T., Jiang B., Davison J., Ketela T., Veillette K., Breton A., Tandia F., Linteau A., Sillaots S.. & other authors ( 2003;). Large-scale essential gene identification in Candida albicans and applications to antifungal drug discovery. Mol Microbiol50:167–181 [CrossRef][PubMed]
    [Google Scholar]
  70. Rossignol T., Lechat P., Cuomo C., Zeng Q., Moszer I., d’Enfert C.. ( 2008;). CandidaDB: a multi-genome database for Candida species and related Saccharomycotina . Nucleic Acids Res36:Database issueD557–D561 [CrossRef][PubMed]
    [Google Scholar]
  71. Samaranayake D. P., Hanes S. D.. ( 2011;). Milestones in Candida albicans gene manipulation. Fungal Genet Biol48:858–865 [CrossRef][PubMed]
    [Google Scholar]
  72. Sánchez-Martínez C., Pérez-Martín J.. ( 2002;). Site-specific targeting of exogenous DNA into the genome of Candida albicans using the FLP recombinase. Mol Genet Genomics268:418–424 [CrossRef][PubMed]
    [Google Scholar]
  73. Saville S. P., Lazzell A. L., Monteagudo C., Lopez-Ribot J. L.. ( 2003;). Engineered control of cell morphology in vivo reveals distinct roles for yeast and filamentous forms of Candida albicans during infection. Eukaryot Cell2:1053–1060 [CrossRef][PubMed]
    [Google Scholar]
  74. Saville S. P., Lazzell A. L., Bryant A. P., Fretzen A., Monreal A., Solberg E. O., Monteagudo C., Lopez-Ribot J. L., Milne G. T.. ( 2006;). Inhibition of filamentation can be used to treat disseminated candidiasis. Antimicrob Agents Chemother50:3312–3316 [CrossRef][PubMed]
    [Google Scholar]
  75. Schaub Y., Dünkler A., Walther A., Wendland J.. ( 2006;). New pFA-cassettes for PCR-based gene manipulation in Candida albicans . J Basic Microbiol46:416–429 [CrossRef][PubMed]
    [Google Scholar]
  76. Shaner N. C., Campbell R. E., Steinbach P. A., Giepmans B. N., Palmer A. E., Tsien R. Y.. ( 2004;). Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol22:1567–1572 [CrossRef][PubMed]
    [Google Scholar]
  77. Shen J., Guo W., Köhler J. R.. ( 2005;). CaNAT1, a heterologous dominant selectable marker for transformation of Candida albicans and other pathogenic Candida species. Infect Immun73:1239–1242 [CrossRef][PubMed]
    [Google Scholar]
  78. Skrzypek M. S., Arnaud M. B., Costanzo M. C., Inglis D. O., Shah P., Binkley G., Miyasato S. R., Sherlock G.. ( 2010;). New tools at the Candida Genome Database: biochemical pathways and full-text literature search. Nucleic Acids Res38:Database issueD428–D432 [CrossRef][PubMed]
    [Google Scholar]
  79. Srikantha T., Klapach A., Lorenz W. W., Tsai L. K., Laughlin L. A., Gorman J. A., Soll D. R.. ( 1996;). The sea pansy Renilla reniformis luciferase serves as a sensitive bioluminescent reporter for differential gene expression in Candida albicans . J Bacteriol178:121–129[PubMed]
    [Google Scholar]
  80. Staib P., Kretschmar M., Nichterlein T., Köhler G., Michel S., Hof H., Hacker J., Morschhäuser J.. ( 1999;). Host-induced, stage-specific virulence gene activation in Candida albicans during infection. Mol Microbiol32:533–546 [CrossRef][PubMed]
    [Google Scholar]
  81. Staib P., Kretschmar M., Nichterlein T., Hof H., Morschhäuser J.. ( 2000a;). Differential activation of a Candida albicans virulence gene family during infection. Proc Natl Acad Sci U S A97:6102–6107 [CrossRef][PubMed]
    [Google Scholar]
  82. Staib P., Michel S., Köhler G., Morschhäuser J.. ( 2000b;). A molecular genetic system for the pathogenic yeast Candida dubliniensis . Gene242:393–398 [CrossRef][PubMed]
    [Google Scholar]
  83. Staib P., Moran G. P., Sullivan D. J., Coleman D. C., Morschhäuser J.. ( 2001;). Isogenic strain construction and gene targeting in Candida dubliniensis . J Bacteriol183:2859–2865 [CrossRef][PubMed]
    [Google Scholar]
  84. Staib P., Lermann U., Blass-Warmuth J., Degel B., Würzner R., Monod M., Schirmeister T., Morschhäuser J.. ( 2008;). Tetracycline-inducible expression of individual secreted aspartic proteases in Candida albicans allows isoenzyme-specific inhibitor screening. Antimicrob Agents Chemother52:146–156 [CrossRef][PubMed]
    [Google Scholar]
  85. Sternberg N., Hamilton D.. ( 1981;). Bacteriophage P1 site-specific recombination. I. Recombination between loxP sites. J Mol Biol150:467–486 [CrossRef][PubMed]
    [Google Scholar]
  86. Stoldt V. R., Sonneborn A., Leuker C. E., Ernst J. F.. ( 1997;). Efg1p, an essential regulator of morphogenesis of the human pathogen Candida albicans, is a member of a conserved class of bHLH proteins regulating morphogenetic processes in fungi. EMBO J16:1982–1991 [CrossRef][PubMed]
    [Google Scholar]
  87. Strauss A., Michel S., Morschhäuser J.. ( 2001;). Analysis of phase-specific gene expression at the single-cell level in the white-opaque switching system of Candida albicans . J Bacteriol183:3761–3769 [CrossRef][PubMed]
    [Google Scholar]
  88. Stynen B., Van Dijck P., Tournu H.. ( 2010;). A CUG codon adapted two-hybrid system for the pathogenic fungus Candida albicans . Nucleic Acids Res38:e184 [CrossRef][PubMed]
    [Google Scholar]
  89. Sugita T., Nakase T.. ( 1999;). Non-universal usage of the leucine CUG codon and the molecular phylogeny of the genus Candida . Syst Appl Microbiol22:79–86 [CrossRef][PubMed]
    [Google Scholar]
  90. Sugiyama H., Ohkuma M., Masuda Y., Park S. M., Ohta A., Takagi M.. ( 1995;). In vivo evidence for non-universal usage of the codon CUG in Candida maltosa . Yeast11:43–52 [CrossRef][PubMed]
    [Google Scholar]
  91. Sundh I., Melin P.. ( 2011;). Safety and regulation of yeasts used for biocontrol or biopreservation in the food or feed chain. Antonie van Leeuwenhoek99:113–119 [CrossRef][PubMed]
    [Google Scholar]
  92. Tang S. J., Sun K. H., Sun G. H., Chang T. Y., Wu W. L., Lee G. C.. ( 2003;). A transformation system for the nonuniversal CUG(Ser) codon usage species Candida rugosa . J Microbiol Methods52:231–238 [CrossRef][PubMed]
    [Google Scholar]
  93. Toyn J. H., Gunyuzlu P. L., White W. H., Thompson L. A., Hollis G. F.. ( 2000;). A counterselection for the tryptophan pathway in yeast: 5-fluoroanthranilic acid resistance. Yeast16:553–560 [CrossRef][PubMed]
    [Google Scholar]
  94. Tsao S., Rahkhoodaee F., Raymond M.. ( 2009;). Relative contributions of the Candida albicans ABC transporters Cdr1p and Cdr2p to clinical azole resistance. Antimicrob Agents Chemother53:1344–1352 [CrossRef][PubMed]
    [Google Scholar]
  95. Uhl M. A., Johnson A. D.. ( 2001;). Development of Streptococcus thermophilus lacZ as a reporter gene for Candida albicans . Microbiology147:1189–1195[PubMed]
    [Google Scholar]
  96. Urlinger S., Baron U., Thellmann M., Hasan M. T., Bujard H., Hillen W.. ( 2000;). Exploring the sequence space for tetracycline-dependent transcriptional activators: novel mutations yield expanded range and sensitivity. Proc Natl Acad Sci U S A97:7963–7968 [CrossRef][PubMed]
    [Google Scholar]
  97. Vetter D., Andrews B. J., Roberts-Beatty L., Sadowski P. D.. ( 1983;). Site-specific recombination of yeast 2-micron DNA in vitro. Proc Natl Acad Sci U S A80:7284–7288 [CrossRef][PubMed]
    [Google Scholar]
  98. Walia A., Calderone R.. ( 2008;). The SSK2 MAPKKK of Candida albicans is required for oxidant adaptation in vitro. FEM Yeast Res8:287–299 [CrossRef][PubMed]
    [Google Scholar]
  99. Wang X., Li G., Deng Y., Yu X., Chen F.. ( 2006;). A site-directed integration system for the nonuniversal CUG(Ser) codon usage species Pichia farinosa by electroporation. Arch Microbiol184:419–424 [CrossRef][PubMed]
    [Google Scholar]
  100. Weld R. J., Plummer K. M., Carpenter M. A., Ridgway H. J.. ( 2006;). Approaches to functional genomics in filamentous fungi. Cell Res16:31–44 [CrossRef][PubMed]
    [Google Scholar]
  101. Wilson R. B., Davis D., Mitchell A. P.. ( 1999;). Rapid hypothesis testing with Candida albicans through gene disruption with short homology regions. J Bacteriol181:1868–1874[PubMed]
    [Google Scholar]
  102. Wirsching S., Michel S., Morschhäuser J.. ( 2000;). Targeted gene disruption in Candida albicans wild-type strains: the role of the MDR1 gene in fluconazole resistance of clinical Candida albicans isolates. Mol Microbiol36:856–865 [CrossRef][PubMed]
    [Google Scholar]
  103. Wirsching S., Moran G. P., Sullivan D. J., Coleman D. C., Morschhäuser J.. ( 2001;). MDR1-mediated drug resistance in Candida dubliniensis . Antimicrob Agents Chemother45:3416–3421 [CrossRef][PubMed]
    [Google Scholar]
  104. Yang Y. L., Chen H. F., Kuo T. J., Lin C. Y.. ( 2006;). Mutations on CaENO1 in Candida albicans inhibit cell growth in the presence of glucose. J Biomed Sci13:313–321 [CrossRef][PubMed]
    [Google Scholar]
  105. Yehuda H., Droby S., Wisniewski M., Goldway M.. ( 2001;). A transformation system for the biocontrol yeast, Candida oleophila, based on hygromycin B resistance. Curr Genet40:282–287 [CrossRef][PubMed]
    [Google Scholar]
  106. Zhang C., Konopka J. B.. ( 2010;). A photostable green fluorescent protein variant for analysis of protein localization in Candida albicans . Eukaryot Cell9:224–226 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.055244-0
Loading
/content/journal/micro/10.1099/mic.0.055244-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error