1887

Abstract

Error-prone and error-free DNA damage repair responses that are induced in most bacteria after exposure to various chemicals, antibiotics or radiation sources were surveyed across the genus . The error-prone SOS mutagenesis response occurs when DNA damage induces a cell’s - or -encoded error-prone polymerases. The model strain ADP1 possesses an unusual, regulatory allele () with an extended 5′ region and only incomplete fragments of . Diverse species were investigated for the presence of and their ability to conduct UV-induced mutagenesis. Unlike ADP1, most strains possessed multiple loci containing either or a allele resembling that of . The nearly omnipresent allele was the ancestral in , with horizontal gene transfer accounting for over half of the operons. Despite multiple () operons in many strains, only three species conducted UV-induced mutagenesis: , and . The type of locus or mutagenesis phenotype a strain possessed was not correlated with its error-free response of survival after UV exposure, but similar diversity was apparent. The survival of 30 strains after UV treatment ranged over five orders of magnitude, with the (Acb) complex and haemolytic strains having lower survival than non-Acb or non-haemolytic strains. These observations demonstrate that a genus can possess a range of DNA damage response mechanisms, and suggest that DNA damage-induced mutation could be an important part of the evolution of the emerging pathogens and .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.054668-0
2012-03-01
2020-01-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/3/601.html?itemId=/content/journal/micro/10.1099/mic.0.054668-0&mimeType=html&fmt=ahah

References

  1. Adams M. D., Goglin K., Molyneaux N., Hujer K. M., Lavender H., Jamison J. J., MacDonald I. J., Martin K. M., Russo T.. & other authors ( 2008;). Comparative genome sequence analysis of multidrug-resistant Acinetobacter baumannii . J Bacteriol190:8053–8064 [CrossRef][PubMed]
    [Google Scholar]
  2. Barbe V., Vallenet D., Fonknechten N., Kreimeyer A., Oztas S., Labarre L., Cruveiller S., Robert C., Duprat S.. & other authors ( 2004;). Unique features revealed by the genome sequence of Acinetobacter sp. ADP1, a versatile and naturally transformation competent bacterium. Nucleic Acids Res32:5766–5779 [CrossRef][PubMed]
    [Google Scholar]
  3. Berenstein D.. ( 1987;). UV-inducible DNA repair in Acinetobacter calcoaceticus . Mutat Res183:219–224[PubMed]
    [Google Scholar]
  4. Bernards A. T., van der Toorn J., van Boven C. P., Dijkshoorn L.. ( 1996;). Evaluation of the ability of a commercial system to identify Acinetobacter genomic species. Eur J Clin Microbiol Infect Dis15:303–308 [CrossRef][PubMed]
    [Google Scholar]
  5. Campoy S., Mazón G., Fernández de Henestrosa A. R., Llagostera M., Monteiro P. B., Barbé J.. ( 2002;). A new regulatory DNA motif of the gamma subclass Proteobacteria: identification of the LexA protein binding site of the plant pathogen Xylella fastidiosa . Microbiology148:3583–3597[PubMed]
    [Google Scholar]
  6. Chang H. C., Wei Y. F., Dijkshoorn L., Vaneechoutte M., Tang C. T., Chang T. C.. ( 2005;). Species-level identification of isolates of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex by sequence analysis of the 16S-23S rRNA gene spacer region. J Clin Microbiol43:1632–1639 [CrossRef][PubMed]
    [Google Scholar]
  7. Chuang Y. C., Sheng W. H., Li S. Y., Lin Y. C., Wang J. T., Chen Y. C., Chang S. C.. ( 2011;). Influence of genospecies of Acinetobacter baumannii complex on clinical outcomes of patients with acinetobacter bacteremia. Clin Infect Dis52:352–360 [CrossRef][PubMed]
    [Google Scholar]
  8. Davis E. O., Springer B., Gopaul K. K., Papavinasasundaram K. G., Sander P., Böttger E. C.. ( 2002;). DNA damage induction of recA in Mycobacterium tuberculosis independently of RecA and LexA. Mol Microbiol46:791–800 [CrossRef][PubMed]
    [Google Scholar]
  9. de Berardinis V., Durot M., Weissenbach J., Salanoubat M.. ( 2009;). Acinetobacter baylyi ADP1 as a model for metabolic system biology. Curr Opin Microbiol12:568–576
    [Google Scholar]
  10. Di Capua C., Bortolotti A., Farías M. E., Cortez N.. ( 2011;). UV-resistant Acinetobacter sp. isolates from Andean wetlands display high catalase activity. FEMS Microbiol Lett317:181–189 [CrossRef][PubMed]
    [Google Scholar]
  11. Dijkshoorn L., Nemec A.. ( 2008;). The diversity of the genus Acinetobacter . Acinetobacter Molecular Microbiology Gerischer U.. Norwich: Caister Academic Press;
    [Google Scholar]
  12. Don R. H., Cox P. T., Wainwright B. J., Baker K., Mattick J. S.. ( 1991;). ‘Touchdown’ PCR to circumvent spurious priming during gene amplification. Nucleic Acids Res19:4008[CrossRef]
    [Google Scholar]
  13. Eisenstadt E., Carlton B. C., Brown B. J.. ( 1994;). Gene mutation. Methods for General and Molecular Bacteriology299–313 Gerhardt P., Murray R. G. E, Wood W. A., Krieg N. R.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  14. Fernández Zenoff V., Siñeriz F., Farías M. E.. ( 2006;). Diverse responses to UV-B radiation and repair mechanisms of bacteria isolated from high-altitude aquatic environments. Appl Environ Microbiol72:7857–7863 [CrossRef][PubMed]
    [Google Scholar]
  15. Foti J. J., Delucia A. M., Joyce C. M., Walker G. C.. ( 2010;). UmuD2 inhibits a non-covalent step during DinB-mediated template slippage on homopolymeric nucleotide runs. J Biol Chem285:23086–23095 [CrossRef][PubMed]
    [Google Scholar]
  16. Friedberg E. C., Walker G. C., Siede W.. ( 1995;). DNA Repair and Mutagenesis Washington, DC: American Society for Microbiology;
    [Google Scholar]
  17. Gerner-Smidt P., Tjernberg I., Ursing J.. ( 1991;). Reliability of phenotypic tests for identification of Acinetobacter species. J Clin Microbiol29:277–282[PubMed]
    [Google Scholar]
  18. Godoy V. G., Jarosz D. F., Simon S. M., Abyzov A., Ilyin V., Walker G. C.. ( 2007;). UmuD and RecA directly modulate the mutagenic potential of the Y family DNA polymerase DinB. Mol Cell28:1058–1070 [CrossRef][PubMed]
    [Google Scholar]
  19. Hacker J., Kaper J. B.. ( 2000;). Pathogenicity islands and the evolution of microbes. Annu Rev Microbiol54:641–679 [CrossRef][PubMed]
    [Google Scholar]
  20. Hare J. M., Perkins S. N., Gregg-Jolly L. A.. ( 2006;). A constitutively expressed, truncated umuDC operon regulates the recA-dependent DNA damage induction of a gene in Acinetobacter baylyi strain ADP1. Appl Environ Microbiol72:4036–4043 [CrossRef][PubMed]
    [Google Scholar]
  21. Iacono M., Villa L., Fortini D., Bordoni R., Imperi F., Bonnal R. J., Sicheritz-Ponten T., De Bellis G., Visca P.. & other authors ( 2008;). Whole-genome pyrosequencing of an epidemic multidrug-resistant Acinetobacter baumannii strain belonging to the European clone II group. Antimicrob Agents Chemother52:2616–2625 [CrossRef][PubMed]
    [Google Scholar]
  22. Jung J., Baek J. H., Park W.. ( 2010;). Complete genome sequence of the diesel-degrading Acinetobacter sp. strain DR1. J Bacteriol192:4794–4795 [CrossRef][PubMed]
    [Google Scholar]
  23. Kang Y. S., Jung J., Jeon C. O., Park W.. ( 2011;). Acinetobacter oleivorans sp. nov. is capable of adhering to and growing on diesel-oil. J Microbiol49:29–34 [CrossRef][PubMed]
    [Google Scholar]
  24. Karah N., Haldorsen B., Hegstad K., Simonsen G. S., Sundsfjord A., Samuelsen O.. Norwegian Study Group of Acinetobacter ( 2011;). Species identification and molecular characterization of Acinetobacter spp. blood culture isolates from Norway. J Antimicrob Chemother66:738–744 [CrossRef][PubMed]
    [Google Scholar]
  25. Kelley W. L.. ( 2006;). Lex marks the spot: the virulent side of SOS and a closer look at the LexA regulon. Mol Microbiol62:1228–1238 [CrossRef][PubMed]
    [Google Scholar]
  26. Kilic A., Li H., Mellmann A., Basustaoglu A. C., Kul M., Senses Z., Aydogan H., Stratton C. W., Harmsen D., Tang Y. W.. ( 2008;). Acinetobacter septicus sp. nov. association with a nosocomial outbreak of bacteremia in a neonatal intensive care unit. J Clin Microbiol46:902–908 [CrossRef][PubMed]
    [Google Scholar]
  27. Kim S. R., Maenhaut-Michel G., Yamada M., Yamamoto Y., Matsui K., Sofuni T., Nohmi T., Ohmori H.. ( 1997;). Multiple pathways for SOS-induced mutagenesis in Escherichia coli: an overexpression of dinB/dinP results in strongly enhancing mutagenesis in the absence of any exogenous treatment to damage DNA. Proc Natl Acad Sci U S A94:13792–13797 [CrossRef][PubMed]
    [Google Scholar]
  28. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A.. & other authors ( 2007;). clustal w and clustal x version 2.0. Bioinformatics23:2947–2948 [CrossRef][PubMed]
    [Google Scholar]
  29. Little J. W., Edmiston S. H., Pacelli L. Z., Mount D. W.. ( 1980;). Cleavage of Escherichia coli lexA protein by the recA protease. Proc Natl Acad Sci U S A77:3225–3229[CrossRef]
    [Google Scholar]
  30. Little J. W., Mount D. W., Yanisch-Perron C. R.. ( 1981;). Purified lexA protein is a repressor of the recA and lexA genes. Proc Natl Acad Sci U S A78:4199–4203[CrossRef]
    [Google Scholar]
  31. McNally K. P., Freitag N. E., Walker G. C.. ( 1990;). LexA-independent expression of a mutant mucAB operon. J Bacteriol172:6223–6231[PubMed]
    [Google Scholar]
  32. Mertens K., Lantsheer L., Ennis D. G., Samuel J. E.. ( 2008;). Constitutive SOS expression and damage-inducible AddAB-mediated recombinational repair systems for Coxiella burnetii as potential adaptations for survival within macrophages. Mol Microbiol69:1411–1426 [CrossRef][PubMed]
    [Google Scholar]
  33. Metzgar D., Bacher J. M., Pezo V., Reader J., Döring V., Schimmel P., Marlière P., de Crécy-Lagard V.. ( 2004;). Acinetobacter sp. ADP1: an ideal model organism for genetic analysis and genome engineering. Nucleic Acids Res32:5780–5790 [CrossRef][PubMed]
    [Google Scholar]
  34. Mount D. W., Low K. B., Edmiston S. J.. ( 1972;). Dominant mutations (lex) in Escherichia coli K-12 which affect radiation sensitivity and frequency of ultraviolet light-induced mutations. J Bacteriol112:886–893[PubMed]
    [Google Scholar]
  35. Nemec A., De Baere T., Tjernberg I., Vaneechoutte M., van der Reijden T. J., Dijkshoorn L.. ( 2001;). Acinetobacter ursingii sp. nov. and Acinetobacter schindleri sp. nov., isolated from human clinical specimens. Int J Syst Evol Microbiol51:1891–1899 [CrossRef][PubMed]
    [Google Scholar]
  36. Nemec A., Musílek M., Vaneechoute M., Falsen E., Dijkshoorn L., Tang Y.-W., Stratton C. W., Mellmann A., Harmsen D.. ( 2008;). Lack of evidence for “Acinetobacter septicus” as a species different from Acinetobacter ursingii?. J Clin Microbiol46:2826–2827 [CrossRef][PubMed]
    [Google Scholar]
  37. Nemec A., Krizova L., Maixnerova M., van der Reijden T. J., Deschaght P., Passet V., Vaneechoutte M., Brisse S., Dijkshoorn L.. ( 2011;). Genotypic and phenotypic characterization of the Acinetobacter calcoaceticusAcinetobacter baumannii complex with the proposal of Acinetobacter pittii sp. nov. (formerly Acinetobacter genomic species 3) and Acinetobacter nosocomialis sp. nov. (formerly Acinetobacter genomic species 13TU). Res Microbiol162:393–404 [CrossRef][PubMed]
    [Google Scholar]
  38. Nishimura Y., Uchida K., Tanaka K., Ino T., Ito H.. ( 1994;). Radiation sensitivities of Acinetobacter strains isolated from clinical sources. J Basic Microbiol34:357–360 [CrossRef][PubMed]
    [Google Scholar]
  39. Nohmi T.. ( 2006;). Environmental stress and lesion-bypass DNA polymerases. Annu Rev Microbiol60:231–253 [CrossRef][PubMed]
    [Google Scholar]
  40. Nohmi T., Battista J. R., Dodson L. A., Walker G. C.. ( 1988;). RecA-mediated cleavage activates UmuD for mutagenesis: mechanistic relationship between transcriptional derepression and posttranslational activation. Proc Natl Acad Sci U S A85:1816–1820 [CrossRef][PubMed]
    [Google Scholar]
  41. Opperman T., Murli S., Smith B. T., Walker G. C.. ( 1999;). A model for a umuDC-dependent prokaryotic DNA damage checkpoint. Proc Natl Acad Sci U S A96:9218–9223 [CrossRef][PubMed]
    [Google Scholar]
  42. Permina E. A., Mironov A. A., Gelfand M. S.. ( 2002;). Damage-repair error-prone polymerases of eubacteria: association with mobile genome elements. Gene293:133–140 [CrossRef][PubMed]
    [Google Scholar]
  43. Rauch P. J., Palmen R., Burds A. A., Gregg-Jolly L. A., van der Zee J. R., Hellingwerf K. J.. ( 1996;). The expression of the Acinetobacter calcoaceticus recA gene increases in response to DNA damage independently of RecA and of development of competence for natural transformation. Microbiology142:1025–1032 [CrossRef][PubMed]
    [Google Scholar]
  44. Reuven N. B., Arad G., Maor-Shoshani A., Livneh Z.. ( 1999;). The mutagenesis protein UmuC is a DNA polymerase activated by UmuD′, RecA, and SSB and is specialized for translesion replication. J Biol Chem274:31763–31766 [CrossRef][PubMed]
    [Google Scholar]
  45. Robinson A., Brzoska A. J., Turner K. M., Withers R., Harry E. J., Lewis P. J., Dixon N. E.. ( 2010;). Essential biological processes of an emerging pathogen: DNA replication, transcription, and cell division in Acinetobacter spp. Microbiol Mol Biol Rev74:273–297 [CrossRef][PubMed]
    [Google Scholar]
  46. Rutala W. A., Gergen M. F., Weber D. J.. ( 2010;). Room decontamination with UV radiation. Infect Control Hosp Epidemiol31:1025–1029 [CrossRef][PubMed]
    [Google Scholar]
  47. Saha S. C., Chopade B. A.. ( 2009;). Radiation sensitivity of Acinetobacter spp. and their redicidation for preservation of meat at low temperature. Bangladesh Med Res Counc Bull35:33–40 [CrossRef][PubMed]
    [Google Scholar]
  48. Sahl J. W., Johnson J. K., Harris A. D., Phillippy A. M., Hsiao W. W., Thom K. A., Rasko D. A.. ( 2011;). Genomic comparison of multi-drug resistant invasive and colonizing Acinetobacter baumannii isolated from diverse human body sites reveals genomic plasticity. BMC Genomics12:291 [CrossRef][PubMed]
    [Google Scholar]
  49. Smith M. G., Gianoulis T. A., Pukatzki S., Mekalanos J. J., Ornston L. N., Gerstein M., Snyder M.. ( 2007;). New insights into Acinetobacter baumannii pathogenesis revealed by high-density pyrosequencing and transposon mutagenesis. Genes Dev21:601–614 [CrossRef][PubMed]
    [Google Scholar]
  50. Sutton M. D., Kim M., Walker G. C.. ( 2001;). Genetic and biochemical characterization of a novel umuD mutation: insights into a mechanism for UmuD self-cleavage. J Bacteriol183:347–357 [CrossRef][PubMed]
    [Google Scholar]
  51. Taddei F., Matic I., Radman M.. ( 1995;). cAMP-dependent SOS induction and mutagenesis in resting bacterial populations. Proc Natl Acad Sci U S A92:11736–11740 [CrossRef][PubMed]
    [Google Scholar]
  52. Tang M., Shen X., Frank E. G., O’Donnell M., Woodgate R., Goodman M. F.. ( 1999;). UmuD′2C is an error-prone DNA polymerase, Escherichia coli pol V. Proc Natl Acad Sci U S A96:8919–8924 [CrossRef][PubMed]
    [Google Scholar]
  53. Tjernberg I., Ursing J.. ( 1989;). Clinical strains of Acinetobacter classified by DNA-DNA hybridization. APMIS97:595–605 [CrossRef][PubMed]
    [Google Scholar]
  54. Towner K. J., Ergogne-Bererzin E., Fewson C. A.. ( 1991;). The Biology of Acinetobacter: Taxonomy, Clinical Importance, Molecular Biology, Physiology, Industrial Relevance New York: Plenum Press;
    [Google Scholar]
  55. Turton J. F., Shah J., Ozongwu C., Pike R.. ( 2010;). Incidence of Acinetobacter species other than A. baumannii among clinical isolates of Acinetobacter: evidence for emerging species. J Clin Microbiol48:1445–1449 [CrossRef][PubMed]
    [Google Scholar]
  56. Vallenet D., Labarre L., Rouy Z., Barbe V., Bocs S., Cruveiller S., Lajus A., Pascal G., Scarpelli C., Médigue C.. ( 2006;). MaGe: a microbial genome annotation system supported by synteny results. Nucleic Acids Res34:53–65 [CrossRef][PubMed]
    [Google Scholar]
  57. Vallenet D., Nordmann P., Barbe V., Poirel L., Mangenot S., Bataille E., Dossat C., Gas S., Kreimeyer A.. & other authors ( 2008;). Comparative analysis of Acinetobacters: three genomes for three lifestyles. PLoS ONE3:e1805 [CrossRef][PubMed]
    [Google Scholar]
  58. Vallenet D., Engelen S., Mornico D., Cruveiller S., Fleury L., Lajus A., Rouy Z., Roche D., Salvignol G.. & other authors ( 2009;). MicroScope: a platform for microbial genome annotation and comparative genomics. Database (Oxford)2009:bap021[PubMed][CrossRef]
    [Google Scholar]
  59. Vaneechoutte M., Young D. M., Ornston L. N., De Baere T., Nemec A., Van Der Reijden T., Carr E., Tjernberg I., Dijkshoorn L.. ( 2006;). Naturally transformable Acinetobacter sp. strain ADP1 belongs to the newly described species Acinetobacter baylyi . Appl Environ Microbiol72:932–936 [CrossRef][PubMed]
    [Google Scholar]
  60. Walker G. C.. ( 1996;). The SOS response of Escherichia coli . Escherichia coli and Salmonella: Cellular and Molecular Biology Neidhardt F. C., Curtiss R. III, Ingraham J. L., Lin E. C. C., Low K. B., Magasanik B., Reznikoff W. S., Riley M., Schaechter M., Umbarger H. E.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  61. Winterling K. W., Chafin D., Hayes J. J., Sun J., Levine A. S., Yasbin R. E., Woodgate R.. ( 1998;). The Bacillus subtilis DinR binding site: redefinition of the consensus sequence. J Bacteriol180:2201–2211[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.054668-0
Loading
/content/journal/micro/10.1099/mic.0.054668-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error