1887

Abstract

The mechanisms that allow to survive and persist in the human host, often in spite of antibiotic therapy, remain poorly characterized. Therefore, the determination of culture conditions for long-term studies is crucial to advancement in this field. Stationary cultures of strain NZ131 and its spontaneous small-colony variant OK171 were found to survive in rich medium for less than 2 weeks, and this inability to survive resulted from the acidification of the medium to below pH 5.5, which the cells did not tolerate for longer than 6–7 days. The growth of NZ131 resulted in acidification of the culture to below pH 5.5 by the onset of stationary phase, and the loss of viability occurred in a linear fashion. These results were also found to be true for M49 strain CS101 and for M1 strain SF370. The strains could be protected from killing by the addition of a buffer that stabilized the pH of the medium at pH 6.5, ensuring bacterial survival to at least 70 days. By contrast, increasing the glucose added to the medium accelerated the loss of culture viability in strain NZ131 but not OK171, suggesting that the small-colony variant is altered in glucose uptake or metabolism. Similarly, acidification of the medium prior to inoculation or at the middle of exponential phase resulted in growth inhibition of all strains. These results suggest that control of the pH is crucial for establishing long-term cultures of .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.054478-0
2012-06-01
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/6/1428.html?itemId=/content/journal/micro/10.1099/mic.0.054478-0&mimeType=html&fmt=ahah

References

  1. Atlas R. M.. ( 2004;). Handbook of Microbiological Media, 3rd edn. Boca Raton, FL: CRC Press; [CrossRef]
    [Google Scholar]
  2. Cleary P. P., Cue D.. ( 2000;). High frequency invasion of mammalian cells by beta hemolytic streptococci. Subcell Biochem33:137–166[PubMed]
    [Google Scholar]
  3. Cleary P. P., McLandsborough L., Ikeda L., Cue D., Krawczak J., Lam H.. ( 1998;). High-frequency intracellular infection and erythrogenic toxin A expression undergo phase variation in M1 group A streptococci. Mol Microbiol28:157–167 [CrossRef][PubMed]
    [Google Scholar]
  4. Courtney H. S., Hasty D. L., Dale J. B.. ( 2002;). Molecular mechanisms of adhesion, colonization, and invasion of group A streptococci. Ann Med34:77–87 [CrossRef][PubMed]
    [Google Scholar]
  5. Cunningham M. W.. ( 2000;). Pathogenesis of group A streptococcal infections. Clin Microbiol Rev13:470–511 [CrossRef][PubMed]
    [Google Scholar]
  6. Dmitriev A. V., McDowell E. J., Chaussee M. S.. ( 2008;). Inter- and intraserotypic variation in the Streptococcus pyogenes Rgg regulon. FEMS Microbiol Lett284:43–51 [CrossRef][PubMed]
    [Google Scholar]
  7. Eberhard T. H., Sledjeski D. D., Boyle M. D.. ( 2001;). Mouse skin passage of a Streptococcus pyogenes Tn917 mutant of sagA/pel restores virulence, beta-hemolysis and sagA/pel expression without altering the position or sequence of the transposon. BMC Microbiol1:33 [CrossRef][PubMed]
    [Google Scholar]
  8. Facinelli B., Spinaci C., Magi G., Giovanetti E., Varaldo P. E.. ( 2001;). Association between erythromycin resistance and ability to enter human respiratory cells in group A streptococci. Lancet358:30–33 [CrossRef][PubMed]
    [Google Scholar]
  9. Ferretti J. J., McShan W. M., Ajdic D., Savic D. J., Savic G., Lyon K., Primeaux C., Sezate S., Suvorov A. N. et al. ( 2001;). Complete genome sequence of an M1 strain of Streptococcus pyogenes. Proc Natl Acad Sci U S A98:4658–4663 [CrossRef][PubMed]
    [Google Scholar]
  10. Fluckiger U., Jones K. F., Fischetti V. A.. ( 1998;). Immunoglobulins to group A streptococcal surface molecules decrease adherence to and invasion of human pharyngeal cells. Infect Immun66:974–979[PubMed]
    [Google Scholar]
  11. Haanes E. J., Heath D. G., Cleary P. P.. ( 1992;). Architecture of the vir regulons of group A streptococci parallels opacity factor phenotype and M protein class. J Bacteriol174:4967–4976[PubMed]
    [Google Scholar]
  12. Hynes W.. ( 2004;). Virulence factors of the group A streptococci and genes that regulate their expression. Front Biosci9:3399–3433 [CrossRef][PubMed]
    [Google Scholar]
  13. Kaplan E. L., Oakes J. M., Johnson D. R.. ( 2007;). Unexpected individual clinical site variation in eradication rates of group A streptococci by penicillin in multisite clinical trials. Pediatr Infect Dis J26:1110–1116 [CrossRef][PubMed]
    [Google Scholar]
  14. Leonard B. A., Woischnik M., Podbielski A.. ( 1998;). Production of stabilized virulence factor-negative variants by group A streptococci during stationary phase. Infect Immun66:3841–3847[PubMed]
    [Google Scholar]
  15. McCarty M.. ( 1966;). The nature of the opaque colony variation in group A streptococci. J Hyg (Lond)64:185–190 [CrossRef][PubMed]
    [Google Scholar]
  16. McShan W. M., Ferretti J. J., Karasawa T., Suvorov A. N., Lin S., Qin B., Jia H., Kenton S., Najar F. et al. ( 2008;). Genome sequence of a nephritogenic and highly transformable M49 strain of Streptococcus pyogenes. J Bacteriol190:7773–7785 [CrossRef][PubMed]
    [Google Scholar]
  17. Molinari G., Chhatwal G. S.. ( 1999;). Streptococcal invasion. Curr Opin Microbiol2:56–61 [CrossRef][PubMed]
    [Google Scholar]
  18. Österlund A., Engstrand L.. ( 1997;). An intracellular sanctuary for Streptococcus pyogenes in human tonsillar epithelium–studies of asymptomatic carriers and in vitro cultured biopsies. Acta Otolaryngol117:883–888 [CrossRef][PubMed]
    [Google Scholar]
  19. Österlund A., Popa R., Nikkilä T., Scheynius A., Engstrand L.. ( 1997;). Intracellular reservoir of Streptococcus pyogenes in vivo: a possible explanation for recurrent pharyngotonsillitis. Laryngoscope107:640–647 [CrossRef][PubMed]
    [Google Scholar]
  20. Pletz M. W., McGee L., Van Beneden C. A., Petit S., Bardsley M., Barlow M., Klugman K. P.. ( 2006;). Fluoroquinolone resistance in invasive Streptococcus pyogenes isolates due to spontaneous mutation and horizontal gene transfer. Antimicrob Agents Chemother50:943–948 [CrossRef][PubMed]
    [Google Scholar]
  21. Proctor R. A., von Eiff C., Kahl B. C., Becker K., McNamara P., Herrmann M., Peters G.. ( 2006;). Small colony variants: a pathogenic form of bacteria that facilitates persistent and recurrent infections. Nat Rev Microbiol4:295–305 [CrossRef][PubMed]
    [Google Scholar]
  22. Rosche W. A., Foster P. L.. ( 2000;). Determining mutation rates in bacterial populations. Methods20:4–17 [CrossRef][PubMed]
    [Google Scholar]
  23. Schmitt-Slomska J., Boué A., Caravano R.. ( 1972;). Induction of L-variants in human diploid cells infected by group A streptococci. Infect Immun5:389–399[PubMed]
    [Google Scholar]
  24. Scott J., Thompson-Mayberry P., Lahmamsi S., King C. J., McShan W. M.. ( 2008;). Phage-associated mutator phenotype in group A streptococcus. J Bacteriol190:6290–6301 [CrossRef][PubMed]
    [Google Scholar]
  25. Seki M., Iida K.-I., Saito M., Nakayama H., Yoshida S.-I.. ( 2004;). Hydrogen peroxide production in Streptococcus pyogenes: involvement of lactate oxidase in coupling with aerobic utilization of lactate. J Bacteriol186:2046–2051 [CrossRef]
    [Google Scholar]
  26. Shaver A. C., Sniegowski P. D.. ( 2003;). Spontaneously arising mutL mutators in evolving Escherichia coli populations are the result of changes in repeat length. J Bacteriol185:6076–6082 [CrossRef][PubMed]
    [Google Scholar]
  27. Trainor V. C., Udy R. K., Bremer P. J., Cook G. M.. ( 1999;). Survival of Streptococcus pyogenes under stress and starvation. FEMS Microbiol Lett176:421–428 [CrossRef][PubMed]
    [Google Scholar]
  28. Wood D. N., Chaussee M. A., Chaussee M. S., Buttaro B. A.. ( 2005;). Persistence of Streptococcus pyogenes in stationary-phase cultures. J Bacteriol187:3319–3328 [CrossRef][PubMed]
    [Google Scholar]
  29. Wood D. N., Weinstein K. E., Podbielski A., Kreikemeyer B., Gaughan J. P., Valentine S., Buttaro B. A.. ( 2009;). Generation of metabolically diverse strains of Streptococcus pyogenes during survival in stationary phase. J Bacteriol191:6242–6252 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.054478-0
Loading
/content/journal/micro/10.1099/mic.0.054478-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error