1887

Abstract

Type 3 fimbriae play a crucial role in biofilm formation, but the mechanism of the regulation of the type 3 fimbrial operon is largely unknown. In CG43, three regulatory genes, , and , are located downstream of the type 3 fimbrial genes . The production of the major pilin MrkA is abolished by the deletion of or but slightly increased by the deletion of . Additionally, quantitative RT-PCR and a promoter–reporter assay of verified that the transcription of was activated by MrkI, suggesting autoactivation of transcription. In addition, sequence analysis of the promoter region revealed a putative ferric uptake regulator (Fur) box. Deletion of decreased the transcription of , and . The expression of type 3 fimbriae and bacterial biofilm formation were also reduced by the deletion of . Moreover, a recombinant Fur was found to be able to bind both promoters, with higher affinity for P than P, implying that Fur controls type 3 fimbriae expression via MrkHI. We also proved that iron availability can influence type 3 fimbriae activity.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.053801-0
2012-04-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/4/1045.html?itemId=/content/journal/micro/10.1099/mic.0.053801-0&mimeType=html&fmt=ahah

References

  1. Båga M., Göransson M., Normark S., Uhlin B. E.. ( 1985;). Transcriptional activation of a Pap pilus virulence operon from uropathogenic Escherichia coli. . EMBO J 4: (13B), 3887–3893.[PubMed]
    [Google Scholar]
  2. Baichoo N., Helmann J. D.. ( 2002;). Recognition of DNA by Fur: a reinterpretation of the Fur box consensus sequence. . J Bacteriol 184:, 5826–5832. [CrossRef][PubMed]
    [Google Scholar]
  3. Benach J., Swaminathan S. S., Tamayo R., Handelman S. K., Folta-Stogniew E., Ramos J. E., Forouhar F., Neely H., Seetharaman J.. & other authors ( 2007;). The structural basis of cyclic diguanylate signal transduction by PilZ domains. . EMBO J 26:, 5153–5166. [CrossRef][PubMed]
    [Google Scholar]
  4. Birck C., Malfois M., Svergun D., Samama J.. ( 2002;). Insights into signal transduction revealed by the low resolution structure of the FixJ response regulator. . J Mol Biol 321:, 447–457. [CrossRef][PubMed]
    [Google Scholar]
  5. Boehm A., Kaiser M., Li H., Spangler C., Kasper C. A., Ackermann M., Kaever V., Sourjik V., Roth V., Jenal U.. ( 2010;). Second messenger-mediated adjustment of bacterial swimming velocity. . Cell 141:, 107–116. [CrossRef][PubMed]
    [Google Scholar]
  6. Brisse S., Fevre C., Passet V., Issenhuth-Jeanjean S., Tournebize R., Diancourt L., Grimont P.. ( 2009;). Virulent clones of Klebsiella pneumoniae: identification and evolutionary scenario based on genomic and phenotypic characterization. . PLoS ONE 4:, e4982. [CrossRef][PubMed]
    [Google Scholar]
  7. Carpenter B. M., Whitmire J. M., Merrell D. S.. ( 2009;). This is not your mother’s repressor: the complex role of fur in pathogenesis. . Infect Immun 77:, 2590–2601. [CrossRef][PubMed]
    [Google Scholar]
  8. Chang H. Y., Lee J. H., Deng W. L., Fu T. F., Peng H. L.. ( 1996;). Virulence and outer membrane properties of a galU mutant of Klebsiella pneumoniae CG43. . Microb Pathog 20:, 255–261. [CrossRef][PubMed]
    [Google Scholar]
  9. Cheng H. Y., Chen Y. S., Wu C. Y., Chang H. Y., Lai Y. C., Peng H. L.. ( 2010;). RmpA regulation of capsular polysaccharide biosynthesis in Klebsiella pneumoniae CG43. . J Bacteriol 192:, 3144–3158. [CrossRef][PubMed]
    [Google Scholar]
  10. Di Martino P., Cafferini N., Joly B., Darfeuille-Michaud A.. ( 2003;). Klebsiella pneumoniae type 3 pili facilitate adherence and biofilm formation on abiotic surfaces. . Res Microbiol 154:, 9–16. [CrossRef][PubMed]
    [Google Scholar]
  11. Escolar L., Pérez-Martín J., de Lorenzo V.. ( 1999;). Opening the iron box: transcriptional metalloregulation by the Fur protein. . J Bacteriol 181:, 6223–6229.[PubMed]
    [Google Scholar]
  12. Forsman K., Göransson M., Uhlin B. E.. ( 1989;). Autoregulation and multiple DNA interactions by a transcriptional regulatory protein in E. coli pili biogenesis. . EMBO J 8:, 1271–1277.[PubMed]
    [Google Scholar]
  13. Fronzes R., Remaut H., Waksman G.. ( 2008;). Architectures and biogenesis of non-flagellar protein appendages in Gram-negative bacteria. . EMBO J 27:, 2271–2280. [CrossRef][PubMed]
    [Google Scholar]
  14. Girish V., Vijayalakshmi A.. ( 2004;). Affordable image analysis using NIH Image/ImageJ. . Indian J Cancer 41:, 47.[PubMed]
    [Google Scholar]
  15. Guzzo C. R., Salinas R. K., Andrade M. O., Farah C. S.. ( 2009;). PILZ protein structure and interactions with PILB and the FIMX EAL domain: implications for control of type IV pilus biogenesis. . J Mol Biol 393:, 848–866. [CrossRef][PubMed]
    [Google Scholar]
  16. Hanson M. S., Hempel J., Brinton C. C. Jr. ( 1988;). Purification of the Escherichia coli type 1 pilin and minor pilus proteins and partial characterization of the adhesin protein. . J Bacteriol 170:, 3350–3358.[PubMed]
    [Google Scholar]
  17. Hengge R.. ( 2009;). Principles of c-di-GMP signalling in bacteria. . Nat Rev Microbiol 7:, 263–273. [CrossRef][PubMed]
    [Google Scholar]
  18. Hernday A., Krabbe M., Braaten B., Low D.. ( 2002;). Self-perpetuating epigenetic pili switches in bacteria. . Proc Natl Acad Sci U S A 99: (Suppl. 4), 16470–16476. [CrossRef][PubMed]
    [Google Scholar]
  19. Hirsch E. B., Tam V. H.. ( 2010;). Detection and treatment options for Klebsiella pneumoniae carbapenemases (KPCs): an emerging cause of multidrug-resistant infection. . J Antimicrob Chemother 65:, 1119–1125. [CrossRef][PubMed]
    [Google Scholar]
  20. Hornick D. B., Allen B. L., Horn M. A., Clegg S.. ( 1992;). Adherence to respiratory epithelia by recombinant Escherichia coli expressing Klebsiella pneumoniae type 3 fimbrial gene products. . Infect Immun 60:, 1577–1588.[PubMed]
    [Google Scholar]
  21. Huang Y. J., Liao H. W., Wu C. C., Peng H. L.. ( 2009;). MrkF is a component of type 3 fimbriae in Klebsiella pneumoniae. . Res Microbiol 160:, 71–79. [CrossRef][PubMed]
    [Google Scholar]
  22. Hultdin U. W., Lindberg S., Grundström C., Huang S., Uhlin B. E., Sauer-Eriksson A. E.. ( 2010;). Structure of FocB – a member of a family of transcription factors regulating fimbrial adhesin expression in uropathogenic Escherichia coli. . FEBS J 277:, 3368–3381. [CrossRef][PubMed]
    [Google Scholar]
  23. Jagnow J., Clegg S.. ( 2003;). Klebsiella pneumoniae MrkD-mediated biofilm formation on extracellular matrix- and collagen-coated surfaces. . Microbiology 149:, 2397–2405. [CrossRef][PubMed]
    [Google Scholar]
  24. Johnson J. G., Clegg S.. ( 2010;). Role of MrkJ, a phosphodiesterase, in type 3 fimbrial expression and biofilm formation in Klebsiella pneumoniae. . J Bacteriol 192:, 3944–3950. [CrossRef][PubMed]
    [Google Scholar]
  25. Johnson J. G., Murphy C. N., Sippy J., Johnson T. J., Clegg S.. ( 2011;). Type 3 fimbriae and biofilm formation are regulated by the transcriptional regulators MrkHI in Klebsiella pneumoniae. . J Bacteriol 193:, 3453–3460. [CrossRef][PubMed]
    [Google Scholar]
  26. Keen N. T., Tamaki S., Kobayashi D., Trollinger D.. ( 1988;). Improved broad-host-range plasmids for DNA cloning in Gram-negative bacteria. . Gene 70:, 191–197. [CrossRef][PubMed]
    [Google Scholar]
  27. Keynan Y., Rubinstein E.. ( 2007;). The changing face of Klebsiella pneumoniae infections in the community. . Int J Antimicrob Agents 30:, 385–389. [CrossRef][PubMed]
    [Google Scholar]
  28. Klemm P., Schembri M. A.. ( 2000;). Bacterial adhesins: function and structure. . Int J Med Microbiol 290:, 27–35. [CrossRef][PubMed]
    [Google Scholar]
  29. Lai Y. C., Peng H. L., Chang H. Y.. ( 2001;). Identification of genes induced in vivo during Klebsiella pneumoniae CG43 infection. . Infect Immun 69:, 7140–7145. [CrossRef][PubMed]
    [Google Scholar]
  30. Lai Y. C., Peng H. L., Chang H. Y.. ( 2003;). RmpA2, an activator of capsule biosynthesis in Klebsiella pneumoniae CG43, regulates K2 cps gene expression at the transcriptional level. . J Bacteriol 185:, 788–800. [CrossRef][PubMed]
    [Google Scholar]
  31. Lane M. C., Li X., Pearson M. M., Simms A. N., Mobley H. L.. ( 2009;). Oxygen-limiting conditions enrich for fimbriate cells of uropathogenic Proteus mirabilis and Escherichia coli. . J Bacteriol 191:, 1382–1392. [CrossRef][PubMed]
    [Google Scholar]
  32. Li X., Rasko D. A., Lockatell C. V., Johnson D. E., Mobley H. L.. ( 2001;). Repression of bacterial motility by a novel fimbrial gene product. . EMBO J 20:, 4854–4862. [CrossRef][PubMed]
    [Google Scholar]
  33. Lin C. T., Huang T. Y., Liang W. C., Peng H. L.. ( 2006;). Homologous response regulators KvgA, KvhA and KvhR regulate the synthesis of capsular polysaccharide in Klebsiella pneumoniae CG43 in a coordinated manner. . J Biochem 140:, 429–438. [CrossRef][PubMed]
    [Google Scholar]
  34. Lin C. T., Wu C. C., Chen Y. S., Lai Y. C., Chi C., Lin J. C., Chen Y., Peng H. L.. ( 2011;). Fur regulation of the capsular polysaccharide biosynthesis and iron-acquisition systems in Klebsiella pneumoniae CG43. . Microbiology 157:, 419–429. [CrossRef][PubMed]
    [Google Scholar]
  35. Maris A. E., Sawaya M. R., Kaczor-Grzeskowiak M., Jarvis M. R., Bearson S. M., Kopka M. L., Schröder I., Gunsalus R. P., Dickerson R. E.. ( 2002;). Dimerization allows DNA target site recognition by the NarL response regulator. . Nat Struct Biol 9:, 771–778. [CrossRef][PubMed]
    [Google Scholar]
  36. Nandal A., Huggins C. C., Woodhall M. R., McHugh J., Rodríguez-Quiñones F., Quail M. A., Guest J. R., Andrews S. C.. ( 2010;). Induction of the ferritin gene (ftnA) of Escherichia coli by Fe2+–Fur is mediated by reversal of H-NS silencing and is RyhB independent. . Mol Microbiol 75:, 637–657. [CrossRef][PubMed]
    [Google Scholar]
  37. Nordmann P., Cuzon G., Naas T.. ( 2009;). The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria. . Lancet Infect Dis 9:, 228–236. [CrossRef][PubMed]
    [Google Scholar]
  38. Pappas K. M., Weingart C. L., Winans S. C.. ( 2004;). Chemical communication in proteobacteria: biochemical and structural studies of signal synthases and receptors required for intercellular signalling. . Mol Microbiol 53:, 755–769. [CrossRef][PubMed]
    [Google Scholar]
  39. Podschun R., Ullmann U.. ( 1998;). Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. . Clin Microbiol Rev 11:, 589–603.[PubMed]
    [Google Scholar]
  40. Rosen D. A., Pinkner J. S., Jones J. M., Walker J. N., Clegg S., Hultgren S. J.. ( 2008;). Utilization of an intracellular bacterial community pathway in Klebsiella pneumoniae urinary tract infection and the effects of FimK on type 1 pilus expression. . Infect Immun 76:, 3337–3345. [CrossRef][PubMed]
    [Google Scholar]
  41. Ryjenkov D. A., Simm R., Römling U., Gomelsky M.. ( 2006;). The PilZ domain is a receptor for the second messenger c-di-GMP: the PilZ domain protein YcgR controls motility in enterobacteria. . J Biol Chem 281:, 30310–30314. [CrossRef][PubMed]
    [Google Scholar]
  42. Saini S., Pearl J. A., Rao C. V.. ( 2009;). Role of FimW, FimY, and FimZ in regulating the expression of type I fimbriae in Salmonella enterica serovar Typhimurium. . J Bacteriol 191:, 3003–3010. [CrossRef][PubMed]
    [Google Scholar]
  43. Schlegel A., Böhm A., Lee S. J., Peist R., Decker K., Boos W.. ( 2002;). Network regulation of the Escherichia coli maltose system. . J Mol Microbiol Biotechnol 4:, 301–307.[PubMed]
    [Google Scholar]
  44. Schroll C., Barken K. B., Krogfelt K. A., Struve C.. ( 2010;). Role of type 1 and type 3 fimbriae in Klebsiella pneumoniae biofilm formation. . BMC Microbiol 10:, 179. [CrossRef][PubMed]
    [Google Scholar]
  45. Skorupski K., Taylor R. K.. ( 1996;). Positive selection vectors for allelic exchange. . Gene 169:, 47–52. [CrossRef][PubMed]
    [Google Scholar]
  46. Struve C., Bojer M., Krogfelt K. A.. ( 2008;). Characterization of Klebsiella pneumoniae type 1 fimbriae by detection of phase variation during colonization and infection and impact on virulence. . Infect Immun 76:, 4055–4065. [CrossRef][PubMed]
    [Google Scholar]
  47. Struve C., Bojer M., Krogfelt K. A.. ( 2009;). Identification of a conserved chromosomal region encoding Klebsiella pneumoniae type 1 and type 3 fimbriae and assessment of the role of fimbriae in pathogenicity. . Infect Immun 77:, 5016–5024. [CrossRef][PubMed]
    [Google Scholar]
  48. Tarkkanen A. M., Virkola R., Clegg S., Korhonen T. K.. ( 1997;). Binding of the type 3 fimbriae of Klebsiella pneumoniae to human endothelial and urinary bladder cells. . Infect Immun 65:, 1546–1549.[PubMed]
    [Google Scholar]
  49. Tsai F. C., Huang Y. T., Chang L. Y., Wang J. T.. ( 2008;). Pyogenic liver abscess as endemic disease, Taiwan. . Emerg Infect Dis 14:, 1592–1600. [CrossRef][PubMed]
    [Google Scholar]
  50. Wilksch J. J., Yang J., Clements A., Gabbe J. L., Short K. R., Cao H., Cavaliere R., James C. E., Whitchurch C. B.. & other authors ( 2011;). MrkH, a novel c-di-GMP-dependent transcriptional activator, controls Klebsiella pneumoniae biofilm formation by regulating type 3 fimbriae expression. . PLoS Pathog 7:, e1002204. [CrossRef][PubMed]
    [Google Scholar]
  51. Wu Y., Outten F. W.. ( 2009;). IscR controls iron-dependent biofilm formation in Escherichia coli by regulating type I fimbria expression. . J Bacteriol 191:, 1248–1257. [CrossRef][PubMed]
    [Google Scholar]
  52. Wu C. C., Huang Y. J., Fung C. P., Peng H. L.. ( 2010;). Regulation of the Klebsiella pneumoniae Kpc fimbriae by the site-specific recombinase KpcI. . Microbiology 156:, 1983–1992. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.053801-0
Loading
/content/journal/micro/10.1099/mic.0.053801-0
Loading

Data & Media loading...

Supplementary table and figures 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error