1887

Abstract

Type 3 fimbriae play a crucial role in biofilm formation, but the mechanism of the regulation of the type 3 fimbrial operon is largely unknown. In CG43, three regulatory genes, , and , are located downstream of the type 3 fimbrial genes . The production of the major pilin MrkA is abolished by the deletion of or but slightly increased by the deletion of . Additionally, quantitative RT-PCR and a promoter–reporter assay of verified that the transcription of was activated by MrkI, suggesting autoactivation of transcription. In addition, sequence analysis of the promoter region revealed a putative ferric uptake regulator (Fur) box. Deletion of decreased the transcription of , and . The expression of type 3 fimbriae and bacterial biofilm formation were also reduced by the deletion of . Moreover, a recombinant Fur was found to be able to bind both promoters, with higher affinity for P than P, implying that Fur controls type 3 fimbriae expression via MrkHI. We also proved that iron availability can influence type 3 fimbriae activity.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.053801-0
2012-04-01
2022-01-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/4/1045.html?itemId=/content/journal/micro/10.1099/mic.0.053801-0&mimeType=html&fmt=ahah

References

  1. Båga M., Göransson M., Normark S., Uhlin B. E. ( 1985). Transcriptional activation of a Pap pilus virulence operon from uropathogenic Escherichia coli . EMBO J 4:13B3887–3893[PubMed]
    [Google Scholar]
  2. Baichoo N., Helmann J. D. ( 2002). Recognition of DNA by Fur: a reinterpretation of the Fur box consensus sequence. J Bacteriol 184:5826–5832 [View Article][PubMed]
    [Google Scholar]
  3. Benach J., Swaminathan S. S., Tamayo R., Handelman S. K., Folta-Stogniew E., Ramos J. E., Forouhar F., Neely H., Seetharaman J. & other authors ( 2007). The structural basis of cyclic diguanylate signal transduction by PilZ domains. EMBO J 26:5153–5166 [View Article][PubMed]
    [Google Scholar]
  4. Birck C., Malfois M., Svergun D., Samama J. ( 2002). Insights into signal transduction revealed by the low resolution structure of the FixJ response regulator. J Mol Biol 321:447–457 [View Article][PubMed]
    [Google Scholar]
  5. Boehm A., Kaiser M., Li H., Spangler C., Kasper C. A., Ackermann M., Kaever V., Sourjik V., Roth V., Jenal U. ( 2010). Second messenger-mediated adjustment of bacterial swimming velocity. Cell 141:107–116 [View Article][PubMed]
    [Google Scholar]
  6. Brisse S., Fevre C., Passet V., Issenhuth-Jeanjean S., Tournebize R., Diancourt L., Grimont P. ( 2009). Virulent clones of Klebsiella pneumoniae: identification and evolutionary scenario based on genomic and phenotypic characterization. PLoS ONE 4:e4982 [View Article][PubMed]
    [Google Scholar]
  7. Carpenter B. M., Whitmire J. M., Merrell D. S. ( 2009). This is not your mother’s repressor: the complex role of fur in pathogenesis. Infect Immun 77:2590–2601 [View Article][PubMed]
    [Google Scholar]
  8. Chang H. Y., Lee J. H., Deng W. L., Fu T. F., Peng H. L. ( 1996). Virulence and outer membrane properties of a galU mutant of Klebsiella pneumoniae CG43. Microb Pathog 20:255–261 [View Article][PubMed]
    [Google Scholar]
  9. Cheng H. Y., Chen Y. S., Wu C. Y., Chang H. Y., Lai Y. C., Peng H. L. ( 2010). RmpA regulation of capsular polysaccharide biosynthesis in Klebsiella pneumoniae CG43. J Bacteriol 192:3144–3158 [View Article][PubMed]
    [Google Scholar]
  10. Di Martino P., Cafferini N., Joly B., Darfeuille-Michaud A. ( 2003). Klebsiella pneumoniae type 3 pili facilitate adherence and biofilm formation on abiotic surfaces. Res Microbiol 154:9–16 [View Article][PubMed]
    [Google Scholar]
  11. Escolar L., Pérez-Martín J., de Lorenzo V. ( 1999). Opening the iron box: transcriptional metalloregulation by the Fur protein. J Bacteriol 181:6223–6229[PubMed]
    [Google Scholar]
  12. Forsman K., Göransson M., Uhlin B. E. ( 1989). Autoregulation and multiple DNA interactions by a transcriptional regulatory protein in E. coli pili biogenesis. EMBO J 8:1271–1277[PubMed]
    [Google Scholar]
  13. Fronzes R., Remaut H., Waksman G. ( 2008). Architectures and biogenesis of non-flagellar protein appendages in Gram-negative bacteria. EMBO J 27:2271–2280 [View Article][PubMed]
    [Google Scholar]
  14. Girish V., Vijayalakshmi A. ( 2004). Affordable image analysis using NIH Image/ImageJ. Indian J Cancer 41:47[PubMed]
    [Google Scholar]
  15. Guzzo C. R., Salinas R. K., Andrade M. O., Farah C. S. ( 2009). PILZ protein structure and interactions with PILB and the FIMX EAL domain: implications for control of type IV pilus biogenesis. J Mol Biol 393:848–866 [View Article][PubMed]
    [Google Scholar]
  16. Hanson M. S., Hempel J., Brinton C. C. Jr ( 1988). Purification of the Escherichia coli type 1 pilin and minor pilus proteins and partial characterization of the adhesin protein. J Bacteriol 170:3350–3358[PubMed]
    [Google Scholar]
  17. Hengge R. ( 2009). Principles of c-di-GMP signalling in bacteria. Nat Rev Microbiol 7:263–273 [View Article][PubMed]
    [Google Scholar]
  18. Hernday A., Krabbe M., Braaten B., Low D. ( 2002). Self-perpetuating epigenetic pili switches in bacteria. Proc Natl Acad Sci U S A 99:Suppl. 416470–16476 [View Article][PubMed]
    [Google Scholar]
  19. Hirsch E. B., Tam V. H. ( 2010). Detection and treatment options for Klebsiella pneumoniae carbapenemases (KPCs): an emerging cause of multidrug-resistant infection. J Antimicrob Chemother 65:1119–1125 [View Article][PubMed]
    [Google Scholar]
  20. Hornick D. B., Allen B. L., Horn M. A., Clegg S. ( 1992). Adherence to respiratory epithelia by recombinant Escherichia coli expressing Klebsiella pneumoniae type 3 fimbrial gene products. Infect Immun 60:1577–1588[PubMed]
    [Google Scholar]
  21. Huang Y. J., Liao H. W., Wu C. C., Peng H. L. ( 2009). MrkF is a component of type 3 fimbriae in Klebsiella pneumoniae . Res Microbiol 160:71–79 [View Article][PubMed]
    [Google Scholar]
  22. Hultdin U. W., Lindberg S., Grundström C., Huang S., Uhlin B. E., Sauer-Eriksson A. E. ( 2010). Structure of FocB – a member of a family of transcription factors regulating fimbrial adhesin expression in uropathogenic Escherichia coli . FEBS J 277:3368–3381 [View Article][PubMed]
    [Google Scholar]
  23. Jagnow J., Clegg S. ( 2003). Klebsiella pneumoniae MrkD-mediated biofilm formation on extracellular matrix- and collagen-coated surfaces. Microbiology 149:2397–2405 [View Article][PubMed]
    [Google Scholar]
  24. Johnson J. G., Clegg S. ( 2010). Role of MrkJ, a phosphodiesterase, in type 3 fimbrial expression and biofilm formation in Klebsiella pneumoniae . J Bacteriol 192:3944–3950 [View Article][PubMed]
    [Google Scholar]
  25. Johnson J. G., Murphy C. N., Sippy J., Johnson T. J., Clegg S. ( 2011). Type 3 fimbriae and biofilm formation are regulated by the transcriptional regulators MrkHI in Klebsiella pneumoniae . J Bacteriol 193:3453–3460 [View Article][PubMed]
    [Google Scholar]
  26. Keen N. T., Tamaki S., Kobayashi D., Trollinger D. ( 1988). Improved broad-host-range plasmids for DNA cloning in Gram-negative bacteria. Gene 70:191–197 [View Article][PubMed]
    [Google Scholar]
  27. Keynan Y., Rubinstein E. ( 2007). The changing face of Klebsiella pneumoniae infections in the community. Int J Antimicrob Agents 30:385–389 [View Article][PubMed]
    [Google Scholar]
  28. Klemm P., Schembri M. A. ( 2000). Bacterial adhesins: function and structure. Int J Med Microbiol 290:27–35 [View Article][PubMed]
    [Google Scholar]
  29. Lai Y. C., Peng H. L., Chang H. Y. ( 2001). Identification of genes induced in vivo during Klebsiella pneumoniae CG43 infection. Infect Immun 69:7140–7145 [View Article][PubMed]
    [Google Scholar]
  30. Lai Y. C., Peng H. L., Chang H. Y. ( 2003). RmpA2, an activator of capsule biosynthesis in Klebsiella pneumoniae CG43, regulates K2 cps gene expression at the transcriptional level. J Bacteriol 185:788–800 [View Article][PubMed]
    [Google Scholar]
  31. Lane M. C., Li X., Pearson M. M., Simms A. N., Mobley H. L. ( 2009). Oxygen-limiting conditions enrich for fimbriate cells of uropathogenic Proteus mirabilis and Escherichia coli . J Bacteriol 191:1382–1392 [View Article][PubMed]
    [Google Scholar]
  32. Li X., Rasko D. A., Lockatell C. V., Johnson D. E., Mobley H. L. ( 2001). Repression of bacterial motility by a novel fimbrial gene product. EMBO J 20:4854–4862 [View Article][PubMed]
    [Google Scholar]
  33. Lin C. T., Huang T. Y., Liang W. C., Peng H. L. ( 2006). Homologous response regulators KvgA, KvhA and KvhR regulate the synthesis of capsular polysaccharide in Klebsiella pneumoniae CG43 in a coordinated manner. J Biochem 140:429–438 [View Article][PubMed]
    [Google Scholar]
  34. Lin C. T., Wu C. C., Chen Y. S., Lai Y. C., Chi C., Lin J. C., Chen Y., Peng H. L. ( 2011). Fur regulation of the capsular polysaccharide biosynthesis and iron-acquisition systems in Klebsiella pneumoniae CG43. Microbiology 157:419–429 [View Article][PubMed]
    [Google Scholar]
  35. Maris A. E., Sawaya M. R., Kaczor-Grzeskowiak M., Jarvis M. R., Bearson S. M., Kopka M. L., Schröder I., Gunsalus R. P., Dickerson R. E. ( 2002). Dimerization allows DNA target site recognition by the NarL response regulator. Nat Struct Biol 9:771–778 [View Article][PubMed]
    [Google Scholar]
  36. Nandal A., Huggins C. C., Woodhall M. R., McHugh J., Rodríguez-Quiñones F., Quail M. A., Guest J. R., Andrews S. C. ( 2010). Induction of the ferritin gene (ftnA) of Escherichia coli by Fe2+–Fur is mediated by reversal of H-NS silencing and is RyhB independent. Mol Microbiol 75:637–657 [View Article][PubMed]
    [Google Scholar]
  37. Nordmann P., Cuzon G., Naas T. ( 2009). The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria. Lancet Infect Dis 9:228–236 [View Article][PubMed]
    [Google Scholar]
  38. Pappas K. M., Weingart C. L., Winans S. C. ( 2004). Chemical communication in proteobacteria: biochemical and structural studies of signal synthases and receptors required for intercellular signalling. Mol Microbiol 53:755–769 [View Article][PubMed]
    [Google Scholar]
  39. Podschun R., Ullmann U. ( 1998). Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev 11:589–603[PubMed]
    [Google Scholar]
  40. Rosen D. A., Pinkner J. S., Jones J. M., Walker J. N., Clegg S., Hultgren S. J. ( 2008). Utilization of an intracellular bacterial community pathway in Klebsiella pneumoniae urinary tract infection and the effects of FimK on type 1 pilus expression. Infect Immun 76:3337–3345 [View Article][PubMed]
    [Google Scholar]
  41. Ryjenkov D. A., Simm R., Römling U., Gomelsky M. ( 2006). The PilZ domain is a receptor for the second messenger c-di-GMP: the PilZ domain protein YcgR controls motility in enterobacteria. J Biol Chem 281:30310–30314 [View Article][PubMed]
    [Google Scholar]
  42. Saini S., Pearl J. A., Rao C. V. ( 2009). Role of FimW, FimY, and FimZ in regulating the expression of type I fimbriae in Salmonella enterica serovar Typhimurium. J Bacteriol 191:3003–3010 [View Article][PubMed]
    [Google Scholar]
  43. Schlegel A., Böhm A., Lee S. J., Peist R., Decker K., Boos W. ( 2002). Network regulation of the Escherichia coli maltose system. J Mol Microbiol Biotechnol 4:301–307[PubMed]
    [Google Scholar]
  44. Schroll C., Barken K. B., Krogfelt K. A., Struve C. ( 2010). Role of type 1 and type 3 fimbriae in Klebsiella pneumoniae biofilm formation. BMC Microbiol 10:179 [View Article][PubMed]
    [Google Scholar]
  45. Skorupski K., Taylor R. K. ( 1996). Positive selection vectors for allelic exchange. Gene 169:47–52 [View Article][PubMed]
    [Google Scholar]
  46. Struve C., Bojer M., Krogfelt K. A. ( 2008). Characterization of Klebsiella pneumoniae type 1 fimbriae by detection of phase variation during colonization and infection and impact on virulence. Infect Immun 76:4055–4065 [View Article][PubMed]
    [Google Scholar]
  47. Struve C., Bojer M., Krogfelt K. A. ( 2009). Identification of a conserved chromosomal region encoding Klebsiella pneumoniae type 1 and type 3 fimbriae and assessment of the role of fimbriae in pathogenicity. Infect Immun 77:5016–5024 [View Article][PubMed]
    [Google Scholar]
  48. Tarkkanen A. M., Virkola R., Clegg S., Korhonen T. K. ( 1997). Binding of the type 3 fimbriae of Klebsiella pneumoniae to human endothelial and urinary bladder cells. Infect Immun 65:1546–1549[PubMed]
    [Google Scholar]
  49. Tsai F. C., Huang Y. T., Chang L. Y., Wang J. T. ( 2008). Pyogenic liver abscess as endemic disease, Taiwan. Emerg Infect Dis 14:1592–1600 [View Article][PubMed]
    [Google Scholar]
  50. Wilksch J. J., Yang J., Clements A., Gabbe J. L., Short K. R., Cao H., Cavaliere R., James C. E., Whitchurch C. B. & other authors ( 2011). MrkH, a novel c-di-GMP-dependent transcriptional activator, controls Klebsiella pneumoniae biofilm formation by regulating type 3 fimbriae expression. PLoS Pathog 7:e1002204 [View Article][PubMed]
    [Google Scholar]
  51. Wu Y., Outten F. W. ( 2009). IscR controls iron-dependent biofilm formation in Escherichia coli by regulating type I fimbria expression. J Bacteriol 191:1248–1257 [View Article][PubMed]
    [Google Scholar]
  52. Wu C. C., Huang Y. J., Fung C. P., Peng H. L. ( 2010). Regulation of the Klebsiella pneumoniae Kpc fimbriae by the site-specific recombinase KpcI. Microbiology 156:1983–1992 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.053801-0
Loading
/content/journal/micro/10.1099/mic.0.053801-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error