1887

Abstract

is a ubiquitous bacterium that is capable of surviving in a broad range of natural environments, including the human host, as either a natural commensal or an opportunistic pathogen involved in severe hospital-acquired infections. How such opportunistic pathogens cause fatal infections is largely unknown but it is likely that they are equipped with sophisticated systems to perceive external signals and interact with eukaryotic cells. Accordingly, being partially exposed at the cell exterior, some surface-associated proteins are involved in several steps of the infection process. Among them are lipoproteins, representing about 25 % of the surface-associated proteins, which could play a major role in bacterial virulence processes. This review focuses on the identification of 90 lipoprotein-encoding genes in the genome of the V583 clinical strain and their putative roles, and provides a transcriptional comparison of microarray data performed in environmental conditions including blood and urine. Taken together, these data suggest a potential involvement of lipoproteins in virulence, making them serious candidates for vaccine production.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.053314-0
2011-11-01
2020-04-07
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/11/3001.html?itemId=/content/journal/micro/10.1099/mic.0.053314-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. ( 1997;). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res25:3389–3402 [CrossRef][PubMed]
    [Google Scholar]
  2. An F. Y., Clewell D. B.. ( 2002;). Identification of the cAD1 sex pheromone precursor in Enterococcus faecalis . J Bacteriol184:1880–1887 [CrossRef][PubMed]
    [Google Scholar]
  3. An F. Y., Sulavik M. C., Clewell D. B.. ( 1999;). Identification and characterization of a determinant (eep) on the Enterococcus faecalis chromosome that is involved in production of the peptide sex pheromone cAD1. J Bacteriol181:5915–5921[PubMed]
    [Google Scholar]
  4. Asanuma M., Kurokawa K., Ichikawa R., Ryu K. H., Chae J. H., Dohmae N., Lee B. L., Nakayama H.. ( 2011;). Structural evidence of α-aminoacylated lipoproteins of Staphylococcus aureus . FEBS J278:716–728 [CrossRef][PubMed]
    [Google Scholar]
  5. Babu M. M., Priya M. L., Selvan A. T., Madera M., Gough J., Aravind L., Sankaran K.. ( 2006;). A database of bacterial lipoproteins (dolop) with functional assignments to predicted lipoproteins. J Bacteriol188:2761–2773 [CrossRef][PubMed]
    [Google Scholar]
  6. Bagos P. G., Tsirigos K. D., Liakopoulos T. D., Hamodrakas S. J.. ( 2008;). Prediction of lipoprotein signal peptides in Gram-positive bacteria with a Hidden Markov Model. J Proteome Res7:5082–5093 [CrossRef][PubMed]
    [Google Scholar]
  7. Bøhle L. A., Riaz T., Egge-Jacobsen W., Skaugen M., Busk Ø. L., Eijsink V. G., Mathiesen G.. ( 2011;). Identification of surface proteins in Enterococcus faecalis V583. BMC Genomics12:135 [CrossRef][PubMed]
    [Google Scholar]
  8. Bourgogne A., Thomson L. C., Murray B. E.. ( 2010;). Bicarbonate enhances expression of the endocarditis and biofilm associated pilus locus, ebpRebpABC, in Enterococcus faecalis . BMC Microbiol10:17 [CrossRef][PubMed]
    [Google Scholar]
  9. Braun V., Wu H. C.. ( 1994;). Lipoproteins, structure, function, biosynthesis and model for protein export. New Compr Biochem27:319–341 [CrossRef]
    [Google Scholar]
  10. Bray B. A., Sutcliffe I. C., Harrington D. J.. ( 2009;). Expression of the MtsA lipoprotein of Streptococcus agalactiae A909 is regulated by manganese and iron. Antonie van Leeuwenhoek95:101–109 [CrossRef][PubMed]
    [Google Scholar]
  11. Brown J. S., Holden D. W.. ( 2002;). Iron acquisition by Gram-positive bacterial pathogens. Microbes Infect4:1149–1156 [CrossRef][PubMed]
    [Google Scholar]
  12. Cabanes D., Dehoux P., Dussurget O., Frangeul L., Cossart P.. ( 2002;). Surface proteins and the pathogenic potential of Listeria monocytogenes . Trends Microbiol10:238–245 [CrossRef][PubMed]
    [Google Scholar]
  13. Chandler J. R., Dunny G. M.. ( 2004;). Enterococcal peptide sex pheromones: synthesis and control of biological activity. Peptides25:1377–1388 [CrossRef][PubMed]
    [Google Scholar]
  14. Chandler J. R., Dunny G. M.. ( 2008;). Characterization of the sequence specificity determinants required for processing and control of sex pheromone by the intramembrane protease Eep and the plasmid-encoded protein PrgY. J Bacteriol190:1172–1183 [CrossRef][PubMed]
    [Google Scholar]
  15. Chow J. W., Thal L. A., Perri M. B., Vazquez J. A., Donabedian S. M., Clewell D. B., Zervos M. J.. ( 1993;). Plasmid-associated hemolysin and aggregation substance production contribute to virulence in experimental enterococcal endocarditis. Antimicrob Agents Chemother37:2474–2477[PubMed][CrossRef]
    [Google Scholar]
  16. Chuang O. N., Schlievert P. M., Wells C. L., Manias D. A., Tripp T. J., Dunny G. M.. ( 2009;). Multiple functional domains of Enterococcus faecalis aggregation substance Asc10 contribute to endocarditis virulence. Infect Immun77:539–548 [CrossRef][PubMed]
    [Google Scholar]
  17. Clewell D. B., An F. Y., Flannagan S. E., Antiporta M., Dunny G. M.. ( 2000;). Enterococcal sex pheromone precursors are part of signal sequences for surface lipoproteins. Mol Microbiol35:246–247 [CrossRef][PubMed]
    [Google Scholar]
  18. Cron L. E., Bootsma H. J., Noske N., Burghout P., Hammerschmidt S., Hermans P. W.. ( 2009;). Surface-associated lipoprotein PpmA of Streptococcus pneumoniae is involved in colonization in a strain-specific manner. Microbiology155:2401–2410 [CrossRef][PubMed]
    [Google Scholar]
  19. Crooks G. E., Hon G., Chandonia J. M., Brenner S. E.. ( 2004;). WebLogo: a sequence logo generator. Genome Res14:1188–1190 [CrossRef][PubMed]
    [Google Scholar]
  20. Denham E. L., Ward P. N., Leigh J. A.. ( 2008;). Lipoprotein signal peptides are processed by Lsp and Eep of Streptococcus uberis . J Bacteriol190:4641–4647 [CrossRef][PubMed]
    [Google Scholar]
  21. Detmers F. J., Lanfermeijer F. C., Poolman B.. ( 2001;). Peptides and ATP binding cassette peptide transporters. Res Microbiol152:245–258 [CrossRef][PubMed]
    [Google Scholar]
  22. Dunny G. M., Brown B. L., Clewell D. B.. ( 1978;). Induced cell aggregation and mating in Streptococcus faecalis: evidence for a bacterial sex pheromone. Proc Natl Acad Sci U S A75:3479–3483 [CrossRef][PubMed]
    [Google Scholar]
  23. Finn R. D., Mistry J., Tate J., Coggill P., Heger A., Pollington J. E., Gavin O. L., Gunasekaran P., Ceric G. et al. & other authors ( 2010;). The Pfam protein families database. Nucleic Acids Res38:Database issueD211–D222 [CrossRef][PubMed]
    [Google Scholar]
  24. Gasteiger E., Hoogland C., Gattiker A., Duvaud S., Wilkins M. R., Appel R. D., Bairoch A.. ( 2005;). Protein Identification and Analysis Tools on the ExPASy Server. The Proteomics Protocols Handbook571–607 Walker J. M.. Totowa, NJ: Humana Press; [CrossRef]
    [Google Scholar]
  25. Gupta S. D., Wu H. C.. ( 1991;). Identification and subcellular localization of apolipoprotein N-acyltransferase in Escherichia coli . FEMS Microbiol Lett78:37–42 [CrossRef][PubMed]
    [Google Scholar]
  26. Hamilton A., Robinson C., Sutcliffe I. C., Slater J., Maskell D. J., Davis-Poynter N., Smith K., Waller A., Harrington D. J.. ( 2006;). Mutation of the maturase lipoprotein attenuates the virulence of Streptococcus equi to a greater extent than does loss of general lipoprotein lipidation. Infect Immun74:6907–6919 [CrossRef][PubMed]
    [Google Scholar]
  27. Hancock L. E., Gilmore M. S.. ( 2002;). The capsular polysaccharide of Enterococcus faecalis and its relationship to other polysaccharides in the cell wall. Proc Natl Acad Sci U S A99:1574–1579 [CrossRef][PubMed]
    [Google Scholar]
  28. Härtel T., Klein M., Koedel U., Rohde M., Petruschka L., Hammerschmidt S.. ( 2011;). Impact of glutamine transporters on pneumococcal fitness under infection-related conditions. Infect Immun79:44–58 [CrossRef][PubMed]
    [Google Scholar]
  29. Hayashi S., Wu H. C.. ( 1990;). Lipoproteins in bacteria. J Bioenerg Biomembr22:451–471 [CrossRef][PubMed]
    [Google Scholar]
  30. Henneke P., Dramsi S., Mancuso G., Chraibi K., Pellegrini E., Theilacker C., Hübner J., Santos-Sierra S., Teti G. et al. & other authors ( 2008;). Lipoproteins are critical TLR2 activating toxins in group B streptococcal sepsis. J Immunol180:6149–6158[PubMed][CrossRef]
    [Google Scholar]
  31. Hermans P. W. M., Adrian P. V., Albert C., Estevão S., Hoogenboezem T., Luijendijk I. H. T., Kamphausen T., Hammerschmidt S.. ( 2006;). The streptococcal lipoprotein rotamase A (SlrA) is a functional peptidyl–prolyl isomerase involved in pneumococcal colonization. J Biol Chem281:968–976 [CrossRef][PubMed]
    [Google Scholar]
  32. Hufnagel M., Hancock L. E., Koch S., Theilacker C., Gilmore M. S., Huebner J.. ( 2004;). Serological and genetic diversity of capsular polysaccharides in Enterococcus faecalis . J Clin Microbiol42:2548–2557 [CrossRef][PubMed]
    [Google Scholar]
  33. Hunt C. P.. ( 1998;). The emergence of enterococci as a cause of nosocomial infection. Br J Biomed Sci55:149–156[PubMed]
    [Google Scholar]
  34. Hutchings M. I., Palmer T., Harrington D. J., Sutcliffe I. C.. ( 2009;). Lipoprotein biogenesis in Gram-positive bacteria: knowing when to hold ’em, knowing when to fold ’em. Trends Microbiol17:13–21 [CrossRef][PubMed]
    [Google Scholar]
  35. Jett B. D., Huycke M. M., Gilmore M. S.. ( 1994;). Virulence of enterococci. Clin Microbiol Rev7:462–478[PubMed]
    [Google Scholar]
  36. Juncker A. S., Willenbrock H., Von Heijne G., Brunak S., Nielsen H., Krogh A.. ( 2003;). Prediction of lipoprotein signal peptides in Gram-negative bacteria. Protein Sci12:1652–1662 [CrossRef][PubMed]
    [Google Scholar]
  37. Kovacs-Simon A., Titball R. W., Michell S. L.. ( 2011;). Lipoproteins of bacterial pathogens. Infect Immun79:548–561 [CrossRef][PubMed]
    [Google Scholar]
  38. Kurokawa K., Lee H., Roh K. B., Asanuma M., Kim Y. S., Nakayama H., Shiratsuchi A., Choi Y., Takeuchi O. et al. & other authors ( 2009;). The triacylated ATP binding cluster transporter substrate-binding lipoprotein of Staphylococcus aureus functions as a native ligand for the Toll-like receptor 2. J Biol Chem284:8406–8411 [CrossRef][PubMed]
    [Google Scholar]
  39. Kyte J., Doolittle R. F.. ( 1982;). A simple method for displaying the hydropathic character of a protein. J Mol Biol157:105–132 [CrossRef][PubMed]
    [Google Scholar]
  40. Lebreton F., Riboulet-Bisson E., Serror P., Sanguinetti M., Posteraro B., Torelli R., Hartke A., Auffray Y., Giard J. C.. ( 2009;). ace, which encodes an adhesin in Enterococcus faecalis, is regulated by Ers and is involved in virulence. Infect Immun77:2832–2839 [CrossRef][PubMed]
    [Google Scholar]
  41. Lewenza S., Mhlanga M. M., Pugsley A. P.. ( 2008;). Novel inner membrane retention signals in Pseudomonas aeruginosa lipoproteins. J Bacteriol190:6119–6125 [CrossRef][PubMed]
    [Google Scholar]
  42. Lowe A. M., Lambert P. A., Smith A. W.. ( 1995;). Cloning of an Enterococcus faecalis endocarditis antigen: homology with adhesins from some oral streptococci. Infect Immun63:703–706[PubMed]
    [Google Scholar]
  43. Machata S., Tchatalbachev S., Mohamed W., Jänsch L., Hain T., Chakraborty T. G.. ( 2008;). Lipoproteins of Listeria monocytogenes are critical for virulence and TLR2-mediated immune activation. J Immunol181:2028–2035[PubMed][CrossRef]
    [Google Scholar]
  44. Mayer M. L., Phillips C. M., Townsend R. A., Halperin S. A., Lee S. F.. ( 2009;). Differential activation of dendritic cells by Toll-like receptor agonists isolated from the Gram-positive vaccine vector Streptococcus gordonii . Scand J Immunol69:351–356 [CrossRef][PubMed]
    [Google Scholar]
  45. McBride S. M., Fischetti V. A., Leblanc D. J., Moellering R. C. Jr, Gilmore M. S.. ( 2007;). Genetic diversity among Enterococcus faecalis . PLoS ONE2:e582 [CrossRef][PubMed]
    [Google Scholar]
  46. Moellering R. C. Jr. ( 1998;). Vancomycin-resistant enterococci. Clin Infect Dis26:1196–1199 [CrossRef][PubMed]
    [Google Scholar]
  47. Murray B. E.. ( 1990;). The life and times of the Enterococcus. Clin Microbiol Rev3:46–65[PubMed]
    [Google Scholar]
  48. Nallapareddy S. R., Singh K. V., Sillanpää J., Garsin D. A., Höök M., Erlandsen S. L., Murray B. E.. ( 2006;). Endocarditis and biofilm-associated pili of Enterococcus faecalis . J Clin Invest116:2799–2807 [CrossRef][PubMed]
    [Google Scholar]
  49. Overweg K., Kerr A., Sluijter M., Jackson M. H., Mitchell T. J., de Jong A. P., de Groot R., Hermans P. W.. ( 2000;). The putative proteinase maturation protein A of Streptococcus pneumoniae is a conserved surface protein with potential to elicit protective immune responses. Infect Immun68:4180–4188 [CrossRef][PubMed]
    [Google Scholar]
  50. Papp-Wallace K. M., Maguire M. E.. ( 2006;). Manganese transport and the role of manganese in virulence. Annu Rev Microbiol60:187–209 [CrossRef][PubMed]
    [Google Scholar]
  51. Paulsen I. T., Banerjei L., Myers G. S., Nelson K. E., Seshadri R., Read T. D., Fouts D. E., Eisen J. A., Gill S. R. et al. & other authors ( 2003;). Role of mobile DNA in the evolution of vancomycin-resistant Enterococcus faecalis . Science299:2071–2074 [CrossRef][PubMed]
    [Google Scholar]
  52. Qin X., Singh K. V., Weinstock G. M., Murray B. E.. ( 2000;). Effects of Enterococcus faecalis fsr genes on production of gelatinase and a serine protease and virulence. Infect Immun68:2579–2586 [CrossRef][PubMed]
    [Google Scholar]
  53. Rahman O., Cummings S. P., Harrington D. J., Sutcliffe I. C.. ( 2008;). Methods for the bioinformatic identification of bacterial lipoproteins encoded in the genomes of Gram-positive bacteria. World J Microbiol Biotechnol24:2377–2382 [CrossRef]
    [Google Scholar]
  54. Rajam G., Anderton J. M., Carlone G. M., Sampson J. S., Ades E. W.. ( 2008;). Pneumococcal surface adhesin A (PsaA): a review. Crit Rev Microbiol34:131–142 [CrossRef][PubMed]
    [Google Scholar]
  55. Rice L. B., Carias L., Rudin S., Vael C., Goossens H., Konstabel C., Klare I., Nallapareddy S. R., Huang W., Murray B. E.. ( 2003;). A potential virulence gene, hylEfm, predominates in Enterococcus faecium of clinical origin. J Infect Dis187:508–512 [CrossRef][PubMed]
    [Google Scholar]
  56. Rich R. L., Kreikemeyer B., Owens R. T., LaBrenz S., Narayana S. V., Weinstock G. M., Murray B. E., Höök M.. ( 1999;). Ace is a collagen-binding MSCRAMM from Enterococcus faecalis . J Biol Chem274:26939–26945 [CrossRef][PubMed]
    [Google Scholar]
  57. Roche A. M., Weiser J. N.. ( 2010;). Identification of the targets of cross-reactive antibodies induced by Streptococcus pneumoniae colonization. Infect Immun78:2231–2239 [CrossRef][PubMed]
    [Google Scholar]
  58. Rose R. W., Brüser T., Kissinger J. C., Pohlschröder M.. ( 2002;). Adaptation of protein secretion to extremely high-salt conditions by extensive use of the twin-arginine translocation pathway. Mol Microbiol45:943–950 [CrossRef][PubMed]
    [Google Scholar]
  59. Sahm D. F., Kissinger J., Gilmore M. S., Murray P. R., Mulder R., Solliday J., Clarke B.. ( 1989;). In vitro susceptibility studies of vancomycin-resistant Enterococcus faecalis . Antimicrob Agents Chemother33:1588–1591[PubMed][CrossRef]
    [Google Scholar]
  60. Sankaran K., Wu H. C.. ( 1994;). Lipid modification of bacterial prolipoprotein. Transfer of diacylglyceryl moiety from phosphatidylglycerol. J Biol Chem269:19701–19706[PubMed]
    [Google Scholar]
  61. Schlievert P. M., Gahr P. J., Assimacopoulos A. P., Dinges M. M., Stoehr J. A., Harmala J. W., Hirt H., Dunny G. M.. ( 1998;). Aggregation and binding substances enhance pathogenicity in rabbit models of Enterococcus faecalis endocarditis. Infect Immun66:218–223[PubMed]
    [Google Scholar]
  62. Serebryakova M. V., Demina I. A., Galyamina M. A., Kondratov I. G., Ladygina V. G., Govorun V. M.. ( 2011;). The acylation state of surface lipoproteins of mollicute Acholeplasma laidlawii . J Biol Chem286:22769–22776 [CrossRef][PubMed]
    [Google Scholar]
  63. Shah P., Swiatlo E.. ( 2008;). A multifaceted role for polyamines in bacterial pathogens. Mol Microbiol68:4–16 [CrossRef][PubMed]
    [Google Scholar]
  64. Shankar V., Baghdayan A. S., Huycke M. M., Lindahl G., Gilmore M. S.. ( 1999;). Infection-derived Enterococcus faecalis strains are enriched in esp, a gene encoding a novel surface protein. Infect Immun67:193–200[PubMed]
    [Google Scholar]
  65. Shankar N., Lockatell C. V., Baghdayan A. S., Drachenberg C., Gilmore M. S., Johnson D. E.. ( 2001;). Role of Enterococcus faecalis surface protein Esp in the pathogenesis of ascending urinary tract infection. Infect Immun69:4366–4372 [CrossRef][PubMed]
    [Google Scholar]
  66. Shankar N., Baghdayan A. S., Gilmore M. S.. ( 2002;). Modulation of virulence within a pathogenicity island in vancomycin-resistant Enterococcus faecalis . Nature417:746–750 [CrossRef][PubMed]
    [Google Scholar]
  67. Shin H. S., Xu F., Bagchi A., Herrup E., Prakash A., Valentine C., Kulkarni H., Wilhelmsen K., Warren S., Hellman J.. ( 2011;). Bacterial lipoprotein TLR2 agonists broadly modulate endothelial function and coagulation pathways in vitro and in vivo . J Immunol186:1119–1130 [CrossRef][PubMed]
    [Google Scholar]
  68. Singh K. V., Coque T. M., Weinstock G. M., Murray B. E.. ( 1998a;). In vivo testing of an Enterococcus faecalis efaA mutant and use of efaA homologs for species identification. FEMS Immunol Med Microbiol21:323–331[PubMed][CrossRef]
    [Google Scholar]
  69. Singh K. V., Qin X., Weinstock G. M., Murray B. E.. ( 1998b;). Generation and testing of mutants of Enterococcus faecalis in a mouse peritonitis model. J Infect Dis178:1416–1420 [CrossRef][PubMed]
    [Google Scholar]
  70. Sleator R. D., Wouters J., Gahan C. G., Abee T., Hill C.. ( 2001;). Analysis of the role of OpuC, an osmolyte transport system, in salt tolerance and virulence potential of Listeria monocytogenes . Appl Environ Microbiol67:2692–2698 [CrossRef][PubMed]
    [Google Scholar]
  71. Solheim M., Aakra A., Vebø H., Snipen L., Nes I. F.. ( 2007;). Transcriptional responses of Enterococcus faecalis V583 to bovine bile and sodium dodecyl sulfate. Appl Environ Microbiol73:5767–5774 [CrossRef][PubMed]
    [Google Scholar]
  72. Solheim M., Aakra A., Snipen L. G., Brede D. A., Nes I. F.. ( 2009;). Comparative genomics of Enterococcus faecalis from healthy Norwegian infants. BMC Genomics10:194 [CrossRef][PubMed]
    [Google Scholar]
  73. Solheim M., Brekke M. C., Snipen L. G., Willems R. J., Nes I. F., Brede D. A.. ( 2011;). Comparative genomic analysis reveals significant enrichment of mobile genetic elements and genes encoding surface structure-proteins in hospital-associated clonal complex 2 Enterococcus faecalis . BMC Microbiol11:3 [CrossRef][PubMed]
    [Google Scholar]
  74. Storf S., Pfeiffer F., Dilks K., Chen Z. Q., Imam S., Pohlschröder M.. ( 2010;). Mutational and bioinformatic analysis of haloarchaeal lipobox-containing proteins. Archaea2010:410975 [CrossRef][PubMed]
    [Google Scholar]
  75. Sutcliffe I. C., Harrington D. J.. ( 2002;). Pattern searches for the identification of putative lipoprotein genes in Gram-positive bacterial genomes. Microbiology148:2065–2077[PubMed]
    [Google Scholar]
  76. Sutcliffe I. C., Harrington D. J.. ( 2004;). Lipoproteins of Mycobacterium tuberculosis: an abundant and functionally diverse class of cell envelope components. FEMS Microbiol Rev28:645–659 [CrossRef][PubMed]
    [Google Scholar]
  77. Sutcliffe I. C., Russell R. R. B.. ( 1995;). Lipoproteins of Gram-positive bacteria. J Bacteriol177:1123–1128[PubMed]
    [Google Scholar]
  78. Tatusov R. L., Natale D. A., Garkavtsev I. V., Tatusova T. A., Shankavaram U. T., Rao B. S., Kiryutin B., Galperin M. Y., Fedorova N. D., Koonin E. V.. ( 2001;). The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res29:22–28 [CrossRef][PubMed]
    [Google Scholar]
  79. Teng F., Jacques-Palaz K. D., Weinstock G. M., Murray B. E.. ( 2002;). Evidence that the enterococcal polysaccharide antigen gene (epa) cluster is widespread in Enterococcus faecalis and influences resistance to phagocytic killing of E. faecalis . Infect Immun70:2010–2015 [CrossRef][PubMed]
    [Google Scholar]
  80. Thompson B. J., Widdick D. A., Hicks M. G., Chandra G., Sutcliffe I. C., Palmer T., Hutchings M. I.. ( 2010;). Investigating lipoprotein biogenesis and function in the model Gram-positive bacterium Streptomyces coelicolor . Mol Microbiol77:943–957[PubMed]
    [Google Scholar]
  81. Valenzuela A. S., Omar N. B., Abriouel H., López R. L., Ortega E., Cañamero M. M., Gálvez A.. ( 2008;). Risk factors in enterococci isolated from foods in Morocco: determination of antimicrobial resistance and incidence of virulence traits. Food Chem Toxicol46:2648–2652 [CrossRef][PubMed]
    [Google Scholar]
  82. Vebø H. C., Snipen L., Nes I. F., Brede D. A.. ( 2009;). The transcriptome of the nosocomial pathogen Enterococcus faecalis V583 reveals adaptive responses to growth in blood. PLoS ONE4:e7660 [CrossRef][PubMed]
    [Google Scholar]
  83. Vebø H. C., Solheim M., Snipen L., Nes I. F., Brede D. A.. ( 2010;). Comparative genomic analysis of pathogenic and probiotic Enterococcus faecalis isolates, and their transcriptional responses to growth in human urine. PLoS ONE5:e12489 [CrossRef][PubMed]
    [Google Scholar]
  84. Weston B. F., Brenot A., Caparon M. G.. ( 2009;). The metal homeostasis protein, Lsp, of Streptococcus pyogenes is necessary for acquisition of zinc and virulence. Infect Immun77:2840–2848 [CrossRef][PubMed]
    [Google Scholar]
  85. Widdick D. A., Hicks M. G., Thompson B. J., Tschumi A., Chandra G., Sutcliffe I. C., Brülle J. K., Sander P., Palmer T., Hutchings M. I.. ( 2011;). Dissecting the complete lipoprotein biogenesis pathway in Streptomyces scabies. . Mol Microbiol80:1395–1412 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.053314-0
Loading
/content/journal/micro/10.1099/mic.0.053314-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error