1887

Abstract

The 120 kDa protein adhesin (AP120) is induced under iron-rich conditions and has sequence homology with pyruvate : ferredoxin oxidoreductase A (PFO A), a hydrogenosomal enzyme that is absent in humans. This homology raises the possibility that, like AP120, PFO might be localized to the parasite surface and participate in cytoadherence. Here, the cellular localization and function of PFO that was expressed under various iron concentrations was investigated using a polyclonal antibody generated against the 50 kDa recombinant C-terminal region of PFO A (anti-PFO50). In Western blot assays, this antibody recognized a 120 kDa protein band in total protein extracts, and proteins with affinity to the surface of HeLa cells from parasites grown under iron-rich conditions. In addition to localization that is typical of hydrogenosomal proteins, PFOs that were expressed under iron-rich conditions were found to localize at the surface. This localization was demonstrated using immunofluorescence and co-localization assays, as well as immunogold transmission electron microscopy. In addition to describing its enzyme activity, we describe a novel function in trichomonal host interaction for the PFO localized on the parasite surface. The anti-PFO50 antibody reduced the levels of adherence to HeLa cell monolayers in a concentration-dependent manner. Thus, PFO is an example of a surface-associated cell-binding protein that lacks enzyme activity and that is involved in cytoadherence. Additionally, PFO behaves like AP120 in parasites grown under iron-rich conditions. Therefore, these data suggest that AP120 and PFO A are encoded by the same gene, namely

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.053033-0
2011-12-01
2020-04-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/12/3469.html?itemId=/content/journal/micro/10.1099/mic.0.053033-0&mimeType=html&fmt=ahah

References

  1. Alderete J. F., Garza G. E.. ( 1985;). Specific nature of Trichomonas vaginalis parasitism of host cell surfaces. Infect Immun50:701–708[PubMed]
    [Google Scholar]
  2. Alderete J. F., Garza G. E.. ( 1988;). Identification and properties of Trichomonas vaginalis proteins involved in cytadherence. Infect Immun56:28–33[PubMed]
    [Google Scholar]
  3. Alderete J. F., O’Brien J. L., Arroyo R., Engbring J. A., Musatovova O., Lopez O., Lauriano C., Nguyen J.. ( 1995;). Cloning and molecular characterization of two genes encoding adhesion proteins involved in Trichomonas vaginalis cytoadherence. Mol Microbiol17:69–83 [CrossRef][PubMed]
    [Google Scholar]
  4. Alderete J. F., Engbring J., Lauriano C. M., O’Brien J. L.. ( 1998;). Only two of the Trichomonas vaginalis triplet AP51 adhesins are regulated by iron. Microb Pathog24:1–16 [CrossRef][PubMed]
    [Google Scholar]
  5. Alderete J. F., Millsap K. W., Lehker M. W., Benchimol M.. ( 2001;). Enzymes on microbial pathogens and Trichomonas vaginalis: molecular mimicry and functional diversity. Cell Microbiol3:359–370 [CrossRef][PubMed]
    [Google Scholar]
  6. Alvarez-Sánchez M. E., Solano-González E., Yañez-Gómez C., Arroyo R.. ( 2007;). Negative iron regulation of the CP65 cysteine proteinase cytotoxicity in Trichomonas vaginalis . Microbes Infect9:1597–1605 [CrossRef][PubMed]
    [Google Scholar]
  7. Arroyo R., Alderete J. F.. ( 1989;). Trichomonas vaginalis surface proteinase activity is necessary for parasite adherence to epithelial cells. Infect Immun57:2991–2997[PubMed]
    [Google Scholar]
  8. Arroyo R., Alderete J. F.. ( 1995;). Two Trichomonas vaginalis surface proteinases bind to host epithelial cells and are related to levels of cytoadherence and cytotoxicity. Arch Med Res26:279–285[PubMed]
    [Google Scholar]
  9. Arroyo R., Engbring J., Alderete J. F.. ( 1992;). Molecular basis of host epithelial cell recognition by Trichomonas vaginalis . Mol Microbiol6:853–862 [CrossRef][PubMed]
    [Google Scholar]
  10. Arroyo R., González-Robles A., Martínez-Palomo A., Alderete J. F.. ( 1993;). Signalling of Trichomonas vaginalis for amoeboid transformation and adhesion synthesis follows cytoadherence. Mol Microbiol7:299–309 [CrossRef][PubMed]
    [Google Scholar]
  11. Arroyo R., Engbring J., Nguyen J., Musatovova O., López O., Lauriano C., Alderete J. F.. ( 1995;). Characterization of cDNAs encoding adhesin proteins involved in Trichomonas vaginalis cytoadherence. Arch Med Res26:361–369[PubMed]
    [Google Scholar]
  12. Bastida-Corcuera F. D., Okumura C. Y., Colocoussi A., Johnson P. J.. ( 2005;). Trichomonas vaginalis lipophosphoglycan mutants have reduced adherence and cytotoxicity to human ectocervical cells. Eukaryot Cell4:1951–1958 [CrossRef][PubMed]
    [Google Scholar]
  13. Benchimol M.. ( 1999;). Hydrogenosome autophagy: an ultrastructural and cytochemical study. Biol Cell91:165–174 [CrossRef][PubMed]
    [Google Scholar]
  14. Bradley P. J., Lahti C. J., Plümper E., Johnson P. J.. ( 1997;). Targeting and translocation of proteins into the hydrogenosome of the protist Trichomonas: similarities with mitochondrial protein import. EMBO J16:3484–3493 [CrossRef][PubMed]
    [Google Scholar]
  15. Brennand A., Gualdrón-López M., Coppens I., Rigden D. J., Ginger M. L., Michels P. A. M.. ( 2011;). Autophagy in parasitic protists: unique features and drug targets. Mol Biochem Parasitol177:83–99 [CrossRef][PubMed]
    [Google Scholar]
  16. Bui E. T., Johnson P. J.. ( 1996;). Identification and characterization of [Fe]-hydrogenases in the hydrogenosome of Trichomonas vaginalis . Mol Biochem Parasitol76:305–310 [CrossRef][PubMed]
    [Google Scholar]
  17. Carlton J. M., Hirt R. P., Silva J. C., Delcher A. L., Schatz M., Zhao Q., Wortman J. R., Bidwell S. L., Alsmark U. C. et al. & other authors ( 2007;). Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis . Science315:207–212 [CrossRef][PubMed]
    [Google Scholar]
  18. Carlton J. M., Malik Sh. B., Sullivan S. A., Sicheritz-Ponten T., Tang P., Hirt R. P.. ( 2010;). The genome of Trichomonas vaginalis . Anaerobic Parasitic Protozoa (Genomics and Molecular Biology)45–80 Clark C. G., Johnson P. J., Adam R. D.. Norfolk, UK: Caister Academic Press;
    [Google Scholar]
  19. Collingridge P. W., Brown R. W. B., Ginger M. L.. ( 2010;). Moonlighting enzymes in parasitic protozoa. Parasitology137:1467–1475 [CrossRef][PubMed]
    [Google Scholar]
  20. Diamond L. S.. ( 1957;). The establishment of various trichomonads of animals and man in axenic cultures. J Parasitol43:488–490 [CrossRef][PubMed]
    [Google Scholar]
  21. Dyall S. D., Koehler C. M., Delgadillo-Correa M. G., Bradley P. J., Plümper E., Leuenberger D., Turck C. W., Johnson P. J.. ( 2000;). Presence of a member of the mitochondrial carrier family in hydrogenosomes: conservation of membrane-targeting pathways between hydrogenosomes and mitochondria. Mol Cell Biol20:2488–2497[CrossRef]
    [Google Scholar]
  22. Engbring J. A., Alderete J. F.. ( 1998a;). Three genes encode distinct AP33 proteins involved in Trichomonas vaginalis cytoadherence. Mol Microbiol28:305–313 [CrossRef][PubMed]
    [Google Scholar]
  23. Engbring J. A., Alderete J. F.. ( 1998b;). Characterization of Trichomonas vaginalis AP33 adhesin and cell surface interactive domains. Microbiology144:3011–3018 [CrossRef][PubMed]
    [Google Scholar]
  24. Engbring J. A., O’Brien J. L., Alderete J. F.. ( 1996;). Trichomonas vaginalis adhesin proteins display molecular mimicry to metabolic enzymes. Adv Exp Med Biol408:207–223 [CrossRef][PubMed]
    [Google Scholar]
  25. Garcia A. F., Chang T. H., Benchimol M., Klumpp D. J., Lehker M. W., Alderete J. F.. ( 2003;). Iron and contact with host cells induce expression of adhesins on surface of Trichomonas vaginalis . Mol Microbiol47:1207–1224 [CrossRef][PubMed]
    [Google Scholar]
  26. Gorrell T. E.. ( 1985;). Effect of culture medium iron content on the biochemical composition and metabolism of Trichomonas vaginalis . J Bacteriol161:1228–1230[PubMed]
    [Google Scholar]
  27. Harlow E., Lane E.. ( 1988;). Antibodies: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  28. Herman M., Pérez-Morga D., Schtickzelle N., Michels P. A.. ( 2008;). Turnover of glycosomes during life-cycle differentiation of Trypanosoma brucei . Autophagy4:294–308[PubMed][CrossRef]
    [Google Scholar]
  29. Hernández H., Sariego I., Garber G., Delgado R., López O., Sarracent J.. ( 2004;). Monoclonal antibodies against a 62 kDa proteinase of Trichomonas vaginalis decrease parasite cytoadherence to epithelial cells and confer protection in mice. Parasite Immunol26:119–125 [CrossRef][PubMed]
    [Google Scholar]
  30. Hirt R. P., Noël C. J., Sicheritz-Ponten T., Tachezy J., Fiori P.-L.. ( 2007;). Trichomonas vaginalis surface proteins: a view from the genome. Trends Parasitol23:540–547 [CrossRef][PubMed]
    [Google Scholar]
  31. Hrdý I., Müller M.. ( 1995;). Primary structure and eubacterial relationships of the pyruvate : ferredoxin oxidoreductase of the amitochondriate eukaryote Trichomonas vaginalis . J Mol Evol41:388–396 [CrossRef][PubMed]
    [Google Scholar]
  32. Huberts D. H. E. W., van der Klei I. J.. ( 2010;). Moonlighting proteins: an intriguing mode of multitasking. Biochim Biophys Acta1803:520–525 [CrossRef][PubMed]
    [Google Scholar]
  33. Jeffery C. J.. ( 1999;). Moonlighting proteins. Trends Biochem Sci24:8–11 [CrossRef][PubMed]
    [Google Scholar]
  34. Jeffery C. J.. ( 2003;). Moonlighting proteins: old proteins learning new tricks. Trends Genet19:415–417 [CrossRef][PubMed]
    [Google Scholar]
  35. Jeffery C. J.. ( 2005;). Mass spectrometry and the search for moonlighting proteins. Mass Spectrom Rev24:772–782 [CrossRef][PubMed]
    [Google Scholar]
  36. Jeffery C. J.. ( 2009;). Moonlighting proteins – an update. Mol Biosyst5:345–350 [CrossRef][PubMed]
    [Google Scholar]
  37. Lahti C. J., Johnson P. J.. ( 1991;). Trichomonas vaginalis hydrogenosomal proteins are synthesized on free polyribosomes and may undergo processing upon maturation. Mol Biochem Parasitol46:307–310 [CrossRef][PubMed]
    [Google Scholar]
  38. Lama A., Kucknoor A., Mundodi V., Alderete J. F.. ( 2009;). Glyceraldehyde-3-phosphate dehydrogenase is a surface-associated, fibronectin-binding protein of Trichomonas vaginalis . Infect Immun77:2703–2711 [CrossRef][PubMed]
    [Google Scholar]
  39. Lehker M. W., Arroyo R., Alderete J. F.. ( 1991;). The regulation by iron of the synthesis of adhesins and cytoadherence levels in the protozoan Trichomonas vaginalis . J Exp Med174:311–318 [CrossRef][PubMed]
    [Google Scholar]
  40. León-Sicairos C. R., León-Félix J., Arroyo R.. ( 2004;). tvcp12: a novel Trichomonas vaginalis cathepsin L-like cysteine proteinase-encoding gene. Microbiology150:1131–1138 [CrossRef][PubMed]
    [Google Scholar]
  41. Mendoza-López M. R., Becerril-Garcia C., Fattel-Facenda L. V., Ávila-Gonzalez L., Ruíz-Tachiquín M. E., Ortega-Lopez J., Arroyo R.. ( 2000;). CP30, a cysteine proteinase involved in Trichomonas vaginalis cytoadherence. Infect Immun68:4907–4912 [CrossRef][PubMed]
    [Google Scholar]
  42. Mentel M., Zimorski V., Haferkamp P., Martin W., Henze K.. ( 2008;). Protein import into hydrogenosomes of Trichomonas vaginalis involves both N-terminal and internal targeting signals: a case study of thioredoxin reductases. Eukaryot Cell7:1750–1757 [CrossRef][PubMed]
    [Google Scholar]
  43. Moreno-Brito V., Yáñez-Gómez C., Meza-Cervantez P., Avila-González L., Rodríguez M. A., Ortega-López J., González-Robles A., Arroyo R.. ( 2005;). A Trichomonas vaginalis 120 kDa protein with identity to hydrogenosome pyruvate : ferredoxin oxidoreductase is a surface adhesin induced by iron. Cell Microbiol7:245–258 [CrossRef][PubMed]
    [Google Scholar]
  44. Mundodi V., Kucknoor A. S., Alderete J. F.. ( 2008;). Immunogenic and plasminogen-binding surface-associated α-enolase of Trichomonas vaginalis . Infect Immun76:523–531 [CrossRef][PubMed]
    [Google Scholar]
  45. Noël C. J., Diaz N., Sicheritz-Ponten T., Safarikova L., Tachezy J., Tang P., Fiori P. L., Hirt R. P.. ( 2010;). Trichomonas vaginalis vast BspA-like gene family: evidence for functional diversity from structural organisation and transcriptomics. BMC Genomics11:99–125 [CrossRef][PubMed]
    [Google Scholar]
  46. Opperdoes F. R., Baudhuin P., Coppens I., De Roe C., Edwards S. W., Weijers P. J., Misset O.. ( 1984;). Purification, morphometric analysis, and characterization of the glycosomes (microbodies) of the protozoan hemoflagellate Trypanosoma brucei . J Cell Biol98:1178–1184 [CrossRef][PubMed]
    [Google Scholar]
  47. Pal-Bhowmick I., Mehta M., Coppens I., Sharma S., Jarori G. K.. ( 2007;). Protective properties and surface localization of Plasmodium falciparum enolase. Infect Immun75:5500–5508 [CrossRef][PubMed]
    [Google Scholar]
  48. Pineda E., Encalada R., Rodríguez-Zavala J. S., Olivos-García A., Moreno-Sánchez R., Saavedra E.. ( 2010;). Pyruvate : ferredoxin oxidoreductase and bifunctional aldehyde-alcohol dehydrogenase are essential for energy metabolism under oxidative stress in Entamoeba histolytica . FEBS J277:3382–3395[PubMed][CrossRef]
    [Google Scholar]
  49. Pomel S., Luk F. C. Y., Beckers C. J. M.. ( 2008;). Host cell egress and invasion induce marked relocations of glycolytic enzymes in Toxoplasma gondii tachyzoites. PLoS Pathog4:e1000188 [CrossRef][PubMed]
    [Google Scholar]
  50. Ramón-Luing L. A., Rendón-Gandarilla F. J., Cárdenas-Guerra R. E., Rodríguez-Cabrera N. A., Ortega-López J., Avila-González L., Angel-Ortiz C., Herrera-Sánchez C. N., Mendoza-García M., Arroyo R.. ( 2010;). Immunoproteomics of the active degradome to identify biomarkers for Trichomonas vaginalis . Proteomics10:435–444 [CrossRef][PubMed]
    [Google Scholar]
  51. Ramos-Martínez E., Olivos-García A., Saavedra E., Nequiz M., Sánchez E. C., Tello E., El-Hafidi M., Saralegui A., Pineda E. et al. & other authors ( 2009;). Entamoeba histolytica: oxygen resistance and virulence. Int J Parasitol39:693–702 [CrossRef][PubMed]
    [Google Scholar]
  52. Redlitz A., Fowler B. J., Plow E. F., Miles L. A.. ( 1995;). The role of an enolase-related molecule in plasminogen binding to cells. Eur J Biochem227:407–415 [CrossRef][PubMed]
    [Google Scholar]
  53. Rodríguez M. A., García-Pérez R. M., Mendoza L., Sánchez T., Guillen N., Orozco E.. ( 1998;). The pyruvate : ferredoxin oxidoreductase enzyme is located in the plasma membrane and in a cytoplasmic structure in Entamoeba . Microb Pathog25:1–10 [CrossRef][PubMed]
    [Google Scholar]
  54. Saavedra E., Encalada R., Pineda E., Jasso-Chávez R., Moreno-Sánchez R.. ( 2005;). Glycolysis in Entamoeba histolytica. Biochemical characterization of recombinant glycolytic enzymes and flux control analysis. FEBS J272:1767–1783 [CrossRef][PubMed]
    [Google Scholar]
  55. Saavedra E., Marín-Hernández A., Encalada R., Olivos A., Mendoza-Hernández G., Moreno-Sánchez R.. ( 2007;). Kinetic modeling can describe in vivo glycolysis in Entamoeba histolytica . FEBS J274:4922–4940 [CrossRef][PubMed]
    [Google Scholar]
  56. Sanger F., Nicklen S., Coulson A. R.. ( 1977;). DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A74:5463–5467 [CrossRef][PubMed]
    [Google Scholar]
  57. Schwebke J. R., Burgess D.. ( 2004;). Trichomoniasis. Clin Microbiol Rev17:794–803 [CrossRef][PubMed]
    [Google Scholar]
  58. Solano-González E., Alvarez-Sánchez M. E., Avila-González L., Rodríguez-Vargas V. H., Arroyo R., Ortega-López J.. ( 2006;). Location of the cell-binding domain of CP65, a 65 kDa cysteine proteinase involved in Trichomonas vaginalis cytotoxicity. Int J Biochem Cell Biol38:2114–2127 [CrossRef][PubMed]
    [Google Scholar]
  59. Solano-González E., Burrola-Barraza E., León-Sicairos C., Avila-González L., Gutiérrez-Escolano L., Ortega-López J., Arroyo R.. ( 2007;). The trichomonad cysteine proteinase TVCP4 transcript contains an iron-responsive element. FEBS Lett581:2919–2928 [CrossRef][PubMed]
    [Google Scholar]
  60. Thammapalerd N., Kotimanusvanij D., Duchene M., Upcroft J. A., Mitchell R., Healey A., Samarawickrema N., Tharavanij S., Wiedermann G., Upcroft P.. ( 1996;). Pyruvate : ferredoxin oxidoreductase from Entamoeba histolytica recognised by a monoclonal antibody. Southeast Asian J Trop Med Public Health27:63–70
    [Google Scholar]
  61. Upcroft J. A., Delgadillo-Correa M. G., Dunne R. L., Sturm A. W., Johnson P. J., Upcroft P.. ( 2006;). Genotyping Trichomonas vaginalis . Int J Parasitol36:821–828 [CrossRef][PubMed]
    [Google Scholar]
  62. Vanácová S., Rasoloson D., Rázga J., Hrdý I., Kulda J., Tachezy J.. ( 2001;). Iron-induced changes in pyruvate metabolism of Tritrichomonas foetus and involvement of iron in expression of hydrogenosomal proteins. Microbiology147:53–62[PubMed]
    [Google Scholar]
  63. Williams K., Lowe P. N., Leadlay P. F.. ( 1987;). Purification and characterization of pyruvate : ferredoxin oxidoreductase from the anaerobic protozoon Trichomonas vaginalis . Biochem J246:529–536[PubMed]
    [Google Scholar]
  64. Wu G., Henze K., Müller M.. ( 2001;). Evolutionary relationships of the glucokinase from the amitochondriate protist, Trichomonas vaginalis . Gene264:265–271 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.053033-0
Loading
/content/journal/micro/10.1099/mic.0.053033-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error