1887

Abstract

Species belonging to the genus are free-living fungi common in soil and root ecosystems, and have a broad range of uses in industry and agricultural biotechnology. Some species of the genus are widely used biocontrol agents, and their success is in part due to mycoparasitism, a lifestyle in which one fungus is parasitic on another. In addition species have been found to elicit plant defence responses and to stimulate plant growth. In order to survive and spread, switches from vegetative to reproductive development, and has evolved with several sophisticated molecular mechanisms to this end. Asexual development (conidiation) is induced by light and mechanical injury, although the effects of these inducers are influenced by environmental conditions, such as nutrient status and pH. A current appreciation of the links between the molecular participants is presented in this review. The photoreceptor complex BLR-1/BLR-2, ENVOY, VELVET, and NADPH oxidases have been suggested as key participants in this process. In concert with these elements, conserved signalling pathways, such as those involving heterotrimeric G proteins, mitogen-activated protein kinases (MAPKs) and cAMP-dependent protein kinase A (cAMP-PKA) are involved in this molecular orchestration. Finally, recent comparative and functional genomics analyses allow a comparison of the machinery involved in conidiophore development in model systems with that present in and a model to be proposed for the key factors involved in the development of these structures.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.052688-0
2012-01-01
2020-08-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/1/3.html?itemId=/content/journal/micro/10.1099/mic.0.052688-0&mimeType=html&fmt=ahah

References

  1. Adams T. H., Wieser J. K., Yu J. H.. ( 1998;). Asexual sporulation in Aspergillus nidulans . Microbiol Mol Biol Rev62:35–54[PubMed]
    [Google Scholar]
  2. Aguirre J., Ríos-Momberg M., Hewitt D., Hansberg W.. ( 2005;). Reactive oxygen species and development in microbial eukaryotes. Trends Microbiol13:111–118 [CrossRef][PubMed]
    [Google Scholar]
  3. Bahn Y. S., Xue C., Idnurm A., Rutherford J. C., Heitman J., Cardenas M. E.. ( 2007;). Sensing the environment: lessons from fungi. Nat Rev Microbiol5:57–69 [CrossRef][PubMed]
    [Google Scholar]
  4. Baum D., Horwitz B. A.. ( 1991;). Change in synthesis and abundance of specific polypeptides at early and late stage of blue-light-induced sporulation of Trichoderma . J Photochem Photobiol11:117–127 [CrossRef]
    [Google Scholar]
  5. Bayram O., Krappmann S., Ni M., Bok J. W., Helmstaedt K., Valerius O., Braus-Stromeyer S., Kwon N. J., Keller N. P.. & other authors ( 2008a;). VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. Science320:1504–1506 [CrossRef][PubMed]
    [Google Scholar]
  6. Bayram O., Krappmann S., Seiler S., Vogt N., Braus G. H.. ( 2008b;). Neurospora crassa ve-1 affects asexual conidiation. Fungal Genet Biol45:127–138 [CrossRef][PubMed]
    [Google Scholar]
  7. Berrocal-Tito G. M., Rosales-Saavedra T., Herrera-Estrella A., Horwitz B. A.. ( 2000;). Characterization of blue-light and developmental regulation of the photolyase gene phr1 in Trichoderma harzianum . Photochem Photobiol71:662–668 [CrossRef][PubMed]
    [Google Scholar]
  8. Betina V., Zajacová J.. ( 1978;). Inhibition of photo-induced Trichoderma viride conidiation by inhibitors of RNA synthesis. Folia Microbiol (Praha)23:460–464 [CrossRef][PubMed]
    [Google Scholar]
  9. Brunner K., Omann M., Pucher M. E., Delic M., Lehner S. M., Domnanich P., Kratochwill K., Druzhinina I., Denk D., Zeilinger S.. ( 2008;). Trichoderma G protein-coupled receptors: functional characterisation of a cAMP receptor-like protein from Trichoderma atroviride . Curr Genet54:283–299 [CrossRef][PubMed]
    [Google Scholar]
  10. Calvo A. M.. ( 2008;). The VeA regulatory system and its role in morphological and chemical development in fungi. Fungal Genet Biol45:1053–1061 [CrossRef][PubMed]
    [Google Scholar]
  11. Calvo A. M., Bok J., Brooks W., Keller N. P.. ( 2004;). veA is required for toxin and sclerotial production in Aspergillus parasiticus . Appl Environ Microbiol70:4733–4739 [CrossRef][PubMed]
    [Google Scholar]
  12. Cano-Domínguez N., Alvarez-Delfín K., Hansberg W., Aguirre J.. ( 2008;). NADPH oxidases NOX-1 and NOX-2 require the regulatory subunit NOR-1 to control cell differentiation and growth in Neurospora crassa . Eukaryot Cell7:1352–1361 [CrossRef][PubMed]
    [Google Scholar]
  13. Casas-Flores S., Rios-Momberg M., Bibbins M., Ponce-Noyola P., Herrera-Estrella A.. ( 2004;). BLR-1 and BLR-2, key regulatory elements of photoconidiation and mycelial growth in Trichoderma atroviride . Microbiology150:3561–3569 [CrossRef][PubMed]
    [Google Scholar]
  14. Casas-Flores S., Rios-Momberg M., Rosales-Saavedra T., Martínez-Hernández P., Olmedo-Monfil V., Herrera-Estrella A.. ( 2006;). Cross talk between a fungal blue-light perception system and the cyclic AMP signaling pathway. Eukaryot Cell5:499–506 [CrossRef][PubMed]
    [Google Scholar]
  15. Castellanos F., Schmoll M., Martínez P., Tisch D., Kubicek C. P., Herrera-Estrella A., Esquivel-Naranjo E. U.. ( 2010;). Crucial factors of the light perception machinery and their impact on growth and cellulase gene transcription in Trichoderma reesei . Fungal Genet Biol47:468–476 [CrossRef][PubMed]
    [Google Scholar]
  16. Chen D., Toone W. M., Mata J., Lyne R., Burns G., Kivinen K., Brazma A., Jones N., Bähler J.. ( 2003;). Global transcriptional responses of fission yeast to environmental stress. Mol Biol Cell14:214–229 [CrossRef][PubMed]
    [Google Scholar]
  17. Chen C. H., DeMay B. S., Gladfelter A. S., Dunlap J. C., Loros J. J.. ( 2010;). Physical interaction between VIVID and white collar complex regulates photoadaptation in Neurospora . Proc Natl Acad Sci U S A107:16715–16720 [CrossRef][PubMed]
    [Google Scholar]
  18. Chovanec P., Hudecová D., Varecka L.. ( 2001;). Vegetative growth, aging- and light-induced conidiation of Trichoderma viride cultivated on different carbon sources. Folia Microbiol (Praha)46:417–422 [CrossRef][PubMed]
    [Google Scholar]
  19. Clutterbuck A. J.. ( 1969;). A mutational analysis of conidial development in Aspergillus nidulans . Genetics63:317–327[PubMed]
    [Google Scholar]
  20. Di Pietro A., García-MacEira F. I., Méglecz E., Roncero M. I.. ( 2001;). A MAP kinase of the vascular wilt fungus Fusarium oxysporum is essential for root penetration and pathogenesis. Mol Microbiol39:1140–1152 [CrossRef][PubMed]
    [Google Scholar]
  21. Druzhinina I., Kubicek C. P.. ( 2005;). Species concept and biodiversity in Trichoderma and Hypocrea: from aggregate species to species clusters?. J Zhejiang Univ Sci B6:100–112 [CrossRef]
    [Google Scholar]
  22. Esquivel-Naranjo E. U.. ( 2007;). Análisis molecular de la percepción de luz en Trichoderma atroviride .
  23. Etxebeste O., Garzia A., Espeso E. A., Ugalde U.. ( 2010;). Aspergillus nidulans asexual development: making the most of cellular modules. Trends Microbiol18:569–576 [CrossRef][PubMed]
    [Google Scholar]
  24. Fiedler K., Schütz E., Geh S.. ( 2001;). Detection of microbial volatile organic compounds (MVOCs) produced by moulds on various materials. Int J Hyg Environ Health204:111–121 [CrossRef][PubMed]
    [Google Scholar]
  25. Friedl M. A., Kubicek C. P., Druzhinina I. S.. ( 2008;). Carbon source dependence and photostimulation of conidiation in Hypocrea atroviridis . Appl Environ Microbiol74:245–250 [CrossRef][PubMed]
    [Google Scholar]
  26. Galun E.. ( 1971;). Scanning electron microscopy of intact Trichoderma colonies. J Bacteriol108:938–940[PubMed]
    [Google Scholar]
  27. Galun E., Gressel J.. ( 1966;). Morphogenesis in Trichoderma: suppression of photoinduction by 5-fluorouracil. Science151:696–698 [CrossRef][PubMed]
    [Google Scholar]
  28. Gao S., Nuss D. L.. ( 1996;). Distinct roles for two G protein α subunits in fungal virulence, morphology, and reproduction revealed by targeted gene disruption. Proc Natl Acad Sci U S A93:14122–14127 [CrossRef][PubMed]
    [Google Scholar]
  29. Gasch A. P., Spellman P. T., Kao C. M., Carmel-Harel O., Eisen M. B., Storz G., Botstein D., Brown P. O.. ( 2000;). Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell11:4241–4257[PubMed][CrossRef]
    [Google Scholar]
  30. Gresik M., Kolarova N., Farkas V.. ( 1988;). Membrane potential, ATP, and cyclic AMP changes induced by light in Trichoderma viride . Exp Mycol12:295–301 [CrossRef]
    [Google Scholar]
  31. Gresík M., Kolarova N., Farkas V.. ( 1989;). Light-stimulated phosphorylation of proteins in cell-free extracts from Trichoderma viride . FEBS Lett248:185–187 [CrossRef][PubMed]
    [Google Scholar]
  32. Gresík M., Kolarova N., Farkas V.. ( 1991;). Hyperpolarization and intracellular acidification in Trichoderma viride as a response to illumination. J Gen Microbiol137:2605–2609[PubMed][CrossRef]
    [Google Scholar]
  33. Gressel J., Galun E.. ( 1967;). Morphogenesis in Trichoderma: photoinduction and RNA. Dev Biol15:575–598 [CrossRef][PubMed]
    [Google Scholar]
  34. Gressel J., Bar-Lev S., Galun E.. ( 1975;). Blue light induced response in the absence of free oxygen. Plant Cell Physiol16:367–370
    [Google Scholar]
  35. Gutter Y.. ( 1957;). Effect of light in sporulation of Trichoderma viride . Bul Res Council Israel Sect D5:273–286
    [Google Scholar]
  36. Hansberg W., Aguirre J.. ( 1990;). Hyperoxidant states cause microbial cell differentiation by cell isolation from dioxygen. J Theor Biol142:201–221 [CrossRef][PubMed]
    [Google Scholar]
  37. Hansberg W., de Groot H., Sies H.. ( 1993;). Reactive oxygen species associated with cell differentiation in Neurospora crassa . Free Radic Biol Med14:287–293 [CrossRef][PubMed]
    [Google Scholar]
  38. Heintzen C., Loros J. J., Dunlap J. C.. ( 2001;). The PAS protein VIVID defines a clock-associated feedback loop that represses light input, modulates gating, and regulates clock resetting. Cell104:453–464 [CrossRef][PubMed]
    [Google Scholar]
  39. Heller J., Tudzynski P.. ( 2011;). Reactive oxygen species in phytopathogenic fungi: signaling, development, and disease. Annu Rev Phytopathol49:369–390 [CrossRef][PubMed]
    [Google Scholar]
  40. Hirayama J., Cho S., Sassone-Corsi P.. ( 2007;). Circadian control by the reduction/oxidation pathway: catalase represses light-dependent clock gene expression in the zebrafish. Proc Natl Acad Sci U S A104:15747–15752 [CrossRef][PubMed]
    [Google Scholar]
  41. Horwitz B. A., Gressel J., Malkin S.. ( 1985;). Photoperception mutants in Trichoderma: mutants that sporulate in response to stress but not light. Curr Genet9:605–613 [CrossRef]
    [Google Scholar]
  42. Horwitz B. A., Perlman A., Gressel J.. ( 1990;). Induction of Trichoderma sporulation by nanosecond laser pulses: evidence against cryptochrome cycling. Photochem Photobiol51:99–104 [CrossRef][PubMed]
    [Google Scholar]
  43. Horwitz B. A., Sharon A., Lu S. W., Ritter V., Sandrock T. M., Yoder O. C., Turgeon B. G.. ( 1999;). A G protein alpha subunit from Cochliobolus heterostrophus involved in mating and appressorium formation. Fungal Genet Biol26:19–32 [CrossRef][PubMed]
    [Google Scholar]
  44. Hunt S. M., Thompson S., Elvin M., Heintzen C.. ( 2010;). VIVID interacts with the WHITE COLLAR complex and FREQUENCY-interacting RNA helicase to alter light and clock responses in Neurospora . Proc Natl Acad Sci U S A107:16709–16714 [CrossRef][PubMed]
    [Google Scholar]
  45. Idnurm A., Heitman J.. ( 2005;). Light controls growth and development via a conserved pathway in the fungal kingdom. PLoS Biol3:e95 [CrossRef][PubMed]
    [Google Scholar]
  46. Kasahara S., Nuss D. L.. ( 1997;). Targeted disruption of a fungal G-protein βsubunit gene results in increased vegetative growth but reduced virulence. Mol Plant Microbe Interact10:984–993 [CrossRef][PubMed]
    [Google Scholar]
  47. Kato N., Brooks W., Calvo A. M.. ( 2003;). The expression of sterigmatocystin and penicillin genes in Aspergillus nidulans is controlled by veA, a gene required for sexual development. Eukaryot Cell2:1178–1186 [CrossRef][PubMed]
    [Google Scholar]
  48. Kays A. M., Rowley P. S., Baasiri R. A., Borkovich K. A.. ( 2000;). Regulation of conidiation and adenylyl cyclase levels by the Gα protein GNA-3 in Neurospora crassa . Mol Cell Biol20:7693–7705 [CrossRef][PubMed]
    [Google Scholar]
  49. Kim H. Y., Han K. H., Lee M., Oh M., Kim H. S., Zhixiong X., Han D. M., Jahng K. Y., Kim J. H., Chae K. S.. ( 2009;). The veA gene is necessary for the negative regulation of the veA expression in Aspergillus nidulans . Curr Genet55:391–397 [CrossRef][PubMed]
    [Google Scholar]
  50. Klein D., Eveleigh D. E.. ( 1998;). Basic biology, taxonomy and genetics 1. Trichoderma and Gliocladium57–73 Kubicek C. P., Harman G. E.. London: Taylor & Francis;
    [Google Scholar]
  51. Kolarova N., Haplová J., Gresík M.. ( 1992;). Light-activated adenyl cyclase from Trichoderma viride . FEMS Microbiol Lett72:275–278 [CrossRef][PubMed]
    [Google Scholar]
  52. Komon-Zelazowska M., Neuhof T., Dieckmann R., von Döhren H., Herrera-Estrella A., Kubicek C. P., Druzhinina I. S.. ( 2007;). Formation of atroviridin by Hypocrea atroviridis is conidiation associated and positively regulated by blue light and the G protein GNA3. Eukaryot Cell6:2332–2342 [CrossRef][PubMed]
    [Google Scholar]
  53. Krystofova S., Borkovich K. A.. ( 2005;). The heterotrimeric G-protein subunits GNG-1 and GNB-1 form a Gβγ dimer required for normal female fertility, asexual development, and Gα protein levels in Neurospora crassa . Eukaryot Cell4:365–378 [CrossRef][PubMed]
    [Google Scholar]
  54. Kumagai T., Oda Y.. ( 1969;). An action spectrum for photoinduced sporulation in the fungus Trichoderma viride . Plant Cell Physiol10:387–392
    [Google Scholar]
  55. Kumar A., Scher K., Mukherjee M., Pardovitz-Kedmi E., Sible G. V., Singh U. S., Kale S. P., Mukherjee P. K., Horwitz B. A.. ( 2010;). Overlapping and distinct functions of two Trichoderma virens MAP kinases in cell-wall integrity, antagonistic properties and repression of conidiation. Biochem Biophys Res Commun398:765–770 [CrossRef][PubMed]
    [Google Scholar]
  56. Lara-Ortíz T., Riveros-Rosas H., Aguirre J.. ( 2003;). Reactive oxygen species generated by microbial NADPH oxidase NoxA regulate sexual development in Aspergillus nidulans . Mol Microbiol50:1241–1255 [CrossRef][PubMed]
    [Google Scholar]
  57. Lev S., Sharon A., Hadar R., Ma H., Horwitz B. A.. ( 1999;). A mitogen-activated protein kinase of the corn leaf pathogen Cochliobolus heterostrophus is involved in conidiation, appressorium formation, and pathogenicity: diverse roles for mitogen-activated protein kinase homologs in foliar pathogens. Proc Natl Acad Sci U S A96:13542–13547 [CrossRef][PubMed]
    [Google Scholar]
  58. Liu Y., He Q., Cheng P.. ( 2003;). Photoreception in Neurospora: a tale of two White Collar proteins. Cell Mol Life Sci60:2131–2138 [CrossRef][PubMed]
    [Google Scholar]
  59. Loubradou G., Bégueret J., Turcq B.. ( 1999;). MOD-D, a G alpha subunit of fungus Podospora anserina, is involved in both regulation of development and vegetative incompatibility. Genetics152:519–528[PubMed]
    [Google Scholar]
  60. Malagnac F., Lalucque H., Lepère G., Silar P.. ( 2004;). Two NADPH oxidase isoforms are required for sexual reproduction and ascospore germination in the filamentous fungus Podospora anserina . Fungal Genet Biol41:982–997 [CrossRef][PubMed]
    [Google Scholar]
  61. Malzahn E., Ciprianidis S., Káldi K., Schafmeier T., Brunner M.. ( 2010;). Photoadaptation in Neurospora by competitive interaction of activating and inhibitory LOV domains. Cell142:762–772 [CrossRef][PubMed]
    [Google Scholar]
  62. Mendoza-Mendoza A., Pozo M. J., Grzegorski D., Martínez P., García J. M., Olmedo-Monfil V., Cortés C., Kenerley C., Herrera-Estrella A.. ( 2003;). Enhanced biocontrol activity of Trichoderma through inactivation of a mitogen-activated protein kinase. Proc Natl Acad Sci U S A100:15965–15970 [CrossRef][PubMed]
    [Google Scholar]
  63. Montero-Barrientos M., Hermosa R., Cardoza R. E., Gutiérrez S., Monte E.. ( 2011;). Functional analysis of the Trichoderma harzianum nox1 gene, encoding an NADPH oxidase, relates production of reactive oxygen species to specific biocontrol activity against Pythium ultimum . Appl Environ Microbiol77:3009–3016 [CrossRef][PubMed]
    [Google Scholar]
  64. Moreno-Mateos M. A., Delgado-Jarana J., Codón A. C., Benítez T.. ( 2007;). pH and Pac1 control development and antifungal activity in Trichoderma harzianum. . Fungal Genet Biol44:1355–1367 [CrossRef][PubMed]
    [Google Scholar]
  65. Mukherjee P. K., Kenerley C. M.. ( 2010;). Regulation of morphogenesis and biocontrol properties in Trichoderma virens by a VELVET protein, Vel1. Appl Environ Microbiol76:2345–2352 [CrossRef][PubMed]
    [Google Scholar]
  66. Mukherjee P. K., Latha J., Hadar R., Horwitz B. A.. ( 2003;). TmkA, a mitogen-activated protein kinase of Trichoderma virens, is involved in biocontrol properties and repression of conidiation in the dark. Eukaryot Cell2:446–455 [CrossRef][PubMed]
    [Google Scholar]
  67. Mukherjee P. K., Latha J., Hadar R., Horwitz B. A.. ( 2004;). Role of two G-protein alpha subunits, TgaA and TgaB, in the antagonism of plant pathogens by Trichoderma virens . Appl Environ Microbiol70:542–549 [CrossRef][PubMed]
    [Google Scholar]
  68. Mukherjee M., Mukherjee P. K., Kale S. P.. ( 2007;). cAMP signalling is involved in growth, germination, mycoparasitism and secondary metabolism in Trichoderma virens . Microbiology153:1734–1742 [CrossRef][PubMed]
    [Google Scholar]
  69. Müller P., Aichinger C., Feldbrügge M., Kahmann R.. ( 1999;). The MAP kinase Kpp2 regulates mating and pathogenic development in Ustilago maydis . Mol Microbiol34:1007–1017 [CrossRef][PubMed]
    [Google Scholar]
  70. Neill S. J., Desikan R., Clarke A., Hurst R. D., Hancock J. T.. ( 2002;). Hydrogen peroxide and nitric oxide as signalling molecules in plants. J Exp Bot53:1237–1247 [CrossRef][PubMed]
    [Google Scholar]
  71. Nemcovic M., Jakubíková L., Víden I., Farkas V.. ( 2008;). Induction of conidiation by endogenous volatile compounds in Trichoderma spp. FEMS Microbiol Lett284:231–236 [CrossRef][PubMed]
    [Google Scholar]
  72. Peñalva M. A., Arst H. N. Jr. ( 2002;). Regulation of gene expression by ambient pH in filamentous fungi and yeasts. Microbiol Mol Biol Rev66:426–446 [CrossRef][PubMed]
    [Google Scholar]
  73. Peñalva M. A., Arst H. N. Jr. ( 2004;). Recent advances in the characterization of ambient pH regulation of gene expression in filamentous fungi and yeasts. Annu Rev Microbiol58:425–451 [CrossRef][PubMed]
    [Google Scholar]
  74. Reinheckel T., Sitte N., Ullrich O., Kuckelkorn U., Davies K. J. A., Grune T.. ( 1998;). Comparative resistance of the 20S and 26S proteasome to oxidative stress. Biochem J335:637–642[PubMed]
    [Google Scholar]
  75. Reithner B., Brunner K., Schuhmacher R., Peissl I., Seidl V., Krska R., Zeilinger S.. ( 2005;). The G protein α subunit Tga1 of Trichoderma atroviride is involved in chitinase formation and differential production of antifungal metabolites. Fungal Genet Biol42:749–760 [CrossRef][PubMed]
    [Google Scholar]
  76. Reithner B., Schuhmacher R., Stoppacher N., Pucher M., Brunner K., Zeilinger S.. ( 2007;). Signaling via the Trichoderma atroviride mitogen-activated protein kinase Tmk 1 differentially affects mycoparasitism and plant protection. Fungal Genet Biol44:1123–1133 [CrossRef][PubMed]
    [Google Scholar]
  77. Rocha-Ramirez V., Omero C., Chet I., Horwitz B. A., Herrera-Estrella A.. ( 2002;). Trichoderma atroviride G-protein α-subunit gene tga1 is involved in mycoparasitic coiling and conidiation. Eukaryot Cell1:594–605 [CrossRef][PubMed]
    [Google Scholar]
  78. Rosales-Saavedra T., Esquivel-Naranjo E. U., Casas-Flores S., Martínez-Hernández P., Ibarra-Laclette E., Cortes-Penagos C., Herrera-Estrella A.. ( 2006;). Novel light-regulated genes in Trichoderma atroviride: a dissection by cDNA microarrays. Microbiology152:3305–3317 [CrossRef][PubMed]
    [Google Scholar]
  79. Rosén S., Yu J. H., Adams T. H.. ( 1999;). The Aspergillus nidulans sfaD gene encodes a G protein βsubunit that is required for normal growth and repression of sporulation. EMBO J18:5592–5600 [CrossRef][PubMed]
    [Google Scholar]
  80. Roze L. V., Chanda A., Laivenieks M., Beaudry R. M., Artymovich K. A., Koptina A. V., Awad D. W., Valeeva D., Jones A. D., Linz J. E.. ( 2010;). Volatile profiling reveals intracellular metabolic changes in Aspergillus parasiticus: veA regulates branched chain amino acid and ethanol metabolism. BMC Biochem11:33 [CrossRef][PubMed]
    [Google Scholar]
  81. Samuels G. J.. ( 1996;). Trichoderma: a review of biology and systematics of the genus. Mycol Res100:923–935 [CrossRef]
    [Google Scholar]
  82. Schmoll M., Zeilinger S., Mach R. L., Kubicek C. P.. ( 2004;). Cloning of genes expressed early during cellulase induction in Hypocrea jecorina by a rapid subtraction hybridization approach. Fungal Genet Biol41:877–887 [CrossRef][PubMed]
    [Google Scholar]
  83. Schmoll M., Franchi L., Kubicek C. P.. ( 2005;). Envoy, a PAS/LOV domain protein of Hypocrea jecorina (anamorph Trichoderma reesei), modulates cellulase gene transcription in response to light. Eukaryot Cell4:1998–2007 [CrossRef][PubMed]
    [Google Scholar]
  84. Schmoll M., Schuster A., Silva R. N., Kubicek C. P.. ( 2009;). The G-alpha protein GNA3 of Hypocrea jecorina (anamorph Trichoderma reesei) regulates cellulase gene expression in the presence of light. Eukaryot Cell8:410–420 [CrossRef][PubMed]
    [Google Scholar]
  85. Schnürer J., Olsson J., Börjesson T.. ( 1999;). Fungal volatiles as indicators of food and feeds spoilage. Fungal Genet Biol27:209–217 [CrossRef][PubMed]
    [Google Scholar]
  86. Schwerdtfeger C., Linden H.. ( 2003;). VIVID is a flavoprotein and serves as a fungal blue light photoreceptor for photoadaptation. EMBO J22:4846–4855 [CrossRef][PubMed]
    [Google Scholar]
  87. Scott B., Eaton C. J.. ( 2008;). Role of reactive oxygen species in fungal cellular differentiations. Curr Opin Microbiol11:488–493[CrossRef]
    [Google Scholar]
  88. Segmüller N., Kokkelink L., Giesbert S., Odinius D., van Kan J., Tudzynski P.. ( 2008;). NADPH oxidases are involved in differentiation and pathogenicity in Botrytis cinerea . Mol Plant Microbe Interact21:808–819 [CrossRef][PubMed]
    [Google Scholar]
  89. Seibel C., Gremel G., do Nascimento Silva R., Schuster A., Kubicek C. P., Schmoll M.. ( 2009;). Light-dependent roles of the G-protein αsubunit GNA1 of Hypocrea jecorina (anamorph Trichoderma reesei). BMC Biol7:58 [CrossRef][PubMed]
    [Google Scholar]
  90. Semighini C. P., Harris S. D.. ( 2008;). Regulation of apical dominance in Aspergillus nidulans hyphae by reactive oxygen species. Genetics179:1919–1932 [CrossRef][PubMed]
    [Google Scholar]
  91. Šimkovič M., Ditte P., Kurucová A., Lakatos B., Varecka L.. ( 2008;). Ca2+-dependent induction of conidiation in submerged cultures of Trichoderma viride . Can J Microbiol54:291–298 [CrossRef][PubMed]
    [Google Scholar]
  92. Steyaert J. M., Weld R. J., Mendoza-Mendoza A., Stewart A.. ( 2010a;). Reproduction without sex: conidiation in the filamentous fungus Trichoderma . Microbiology156:2887–2900 [CrossRef][PubMed]
    [Google Scholar]
  93. Steyaert J. M., Weld R. J., Stewart A.. ( 2010b;). Ambient pH intrinsically influences Trichoderma conidiation and colony morphology. Fungal Biol114:198–208 [CrossRef][PubMed]
    [Google Scholar]
  94. Steyaert J. M., Weld R. J., Stewart A.. ( 2010c;). Isolate-specific conidiation in Trichoderma in response to different nitrogen sources. Fungal Biol114:179–188 [CrossRef][PubMed]
    [Google Scholar]
  95. Stinnett S. M., Espeso E. A., Cobeño L., Araújo-Bazán L., Calvo A. M.. ( 2007;). Aspergillus nidulans VeA subcellular localization is dependent on the importin αcarrier and on light. Mol Microbiol63:242–255 [CrossRef][PubMed]
    [Google Scholar]
  96. Stoppacher N., Kluger B., Zeilinger S., Krska R., Schuhmacher R.. ( 2010;). Identification and profiling of volatile metabolites of the biocontrol fungus Trichoderma atroviride by HS-SPME-GC-MS. J Microbiol Methods81:187–193 [CrossRef][PubMed]
    [Google Scholar]
  97. Takano Y., Kikuchi T., Kubo Y., Hamer J. E., Mise K., Furusawa I.. ( 2000;). The Colletotrichum lagenarium MAP kinase gene CMK1 regulates diverse aspects of fungal pathogenesis. Mol Plant Microbe Interact13:374–383 [CrossRef][PubMed]
    [Google Scholar]
  98. Takemoto D., Tanaka A., Scott B.. ( 2007;). NADPH oxidases in fungi: diverse roles of reactive oxygen species in fungal cellular differentiation. Fungal Genet Biol44:1065–1076 [CrossRef][PubMed]
    [Google Scholar]
  99. Tisch D., Kubicek C. P., Schmoll M.. ( 2011;). New insights into the mechanism of light modulated signaling by heterotrimeric G-proteins: ENVOY acts on gna1 and gna3 and adjusts cAMP levels in Trichoderma reesei (Hypocrea jecorina). Fungal Genet Biol48:631–640 [CrossRef][PubMed]
    [Google Scholar]
  100. Toledo I., Aguirre J., Hansberg W.. ( 1994;). Enzyme inactivation related to a hyperoxidant state during conidiation of Neurospora crassa . Microbiology140:2391–2397 [CrossRef][PubMed]
    [Google Scholar]
  101. Wheatley R., Hackett C., Bruce A., Kundzewicz A.. ( 1997;). Effect of substrate composition on production of volatile organic compounds from Trichoderma spp. inhibitory to wood decay fungi. Int Biodeterior Biodegradation39:199–205 [CrossRef]
    [Google Scholar]
  102. Xu J. R.. ( 2000;). Map kinases in fungal pathogens. Fungal Genet Biol31:137–152 [CrossRef][PubMed]
    [Google Scholar]
  103. Xu J. R., Hamer J. E.. ( 1996;). MAP kinase and cAMP signaling regulate infection structure formation and pathogenic growth in the rice blast fungus Magnaporthe grisea . Genes Dev10:2696–2706 [CrossRef][PubMed]
    [Google Scholar]
  104. Yang Q., Poole S. I., Borkovich K. A.. ( 2002;). A G-protein βsubunit required for sexual and vegetative development and maintenance of normal Gα protein levels in Neurospora crassa . Eukaryot Cell1:378–390 [CrossRef][PubMed]
    [Google Scholar]
  105. Yu J.-H.. ( 2010;). Regulation of development in Aspergillus nidulans and Aspergillus fumigatus . Mycobiology38:229–237 [CrossRef]
    [Google Scholar]
  106. Yu J. H., Mah J. H., Seo J. A.. ( 2006;). Growth and developmental control in the model and pathogenic aspergilli. Eukaryot Cell5:1577–1584 [CrossRef][PubMed]
    [Google Scholar]
  107. Zeilinger S., Reithner B., Scala V., Peissl I., Lorito M., Mach R. L.. ( 2005;). Signal transduction by Tga3, a novel G protein α subunit of Trichoderma atroviride . Appl Environ Microbiol71:1591–1597 [CrossRef][PubMed]
    [Google Scholar]
  108. Zheng L., Campbell M., Murphy J., Lam S., Xu J. R.. ( 2000;). The BMP1 gene is essential for pathogenicity in the gray mold fungus Botrytis cinerea . Mol Plant Microbe Interact13:724–732 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.052688-0
Loading
/content/journal/micro/10.1099/mic.0.052688-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error