1887

Abstract

can invade the central nervous system through diverse mechanisms. We examined a possible role for host plasma proteases in the neurotropic behaviour of this blood-borne fungal pathogen. Plasminogen is a plasma-enriched zymogen that can passively coat the surface of blood-borne pathogens and, upon conversion to the serine protease plasmin, facilitate pathogen dissemination by degrading vascular barriers. In this study, plasminogen-to-plasmin conversion on killed and viable hypoencapsulated strains of required the addition of plasminogen activator (PA), but this conversion occurred in the absence of supplemented PA when viable strains were cultured with brain microvascular endothelial cells (BMEC). Plasmin-coated showed an enhanced invasive ability in Matrigel invasion assays that was significantly augmented in the presence of BMEC. The invasive effect of plasmin required viable pathogen and correlated with rapid declines in BMEC barrier function. Plasmin-enhanced invasion was inhibited by aprotinin, carboxypeptidase B, the lysine analogue epsilon-aminocaproic acid, and by capsule development. caused plasminogen-independent declines in BMEC barrier function that were associated with pathogen-induced host damage; however, such declines were significantly delayed and less extensive than those observed with plasmin-coated pathogen. BMEC adhesion and damage by hypoencapsulated were diminished by capsule induction but unaltered by plasminogen and/or PA. We conclude that hypoencapsulated can invade BMEC by a plasmin-dependent mechanism, , and that small, or minimal, surface capsule expression during the blood-borne phase of cryptococcosis may promote virulence by means of plasmin(ogen) acquisition.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.051524-0
2012-01-01
2020-07-12
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/1/240.html?itemId=/content/journal/micro/10.1099/mic.0.051524-0&mimeType=html&fmt=ahah

References

  1. Ambesi A., Klein R. M., Pumiglia K. M., McKeown-Longo P. J.. ( 2005;). Anastellin, a fragment of the first type III repeat of fibronectin, inhibits extracellular signal-regulated kinase and causes G1 arrest in human microvessel endothelial cells. Cancer Res65:148–156[PubMed]
    [Google Scholar]
  2. Attali C., Durmort C., Vernet T., Di Guilmi A. M.. ( 2008;). The interaction of Streptococcus pneumoniae with plasmin mediates transmigration across endothelial and epithelial monolayers by intercellular junction cleavage. Infect Immun76:5350–5356 [CrossRef][PubMed]
    [Google Scholar]
  3. Bennett J. E., Kwon-Chung K. J., Howard D. H.. ( 1977;). Epidemiologic differences among serotypes of Cryptococcus neoformans. . Am J Epidemiol105:582–586[PubMed]
    [Google Scholar]
  4. Bergmann S., Hammerschmidt S.. ( 2007;). Fibrinolysis and host response in bacterial infections. Thromb Haemost98:512–520[PubMed]
    [Google Scholar]
  5. Bolaños B., Mitchell T. G.. ( 1989;). Phagocytosis and killing of Cryptococcus neoformans by rat alveolar macrophages in the absence of serum. J Leukoc Biol46:521–528[PubMed]
    [Google Scholar]
  6. Brooks A. M., Bates M. E., Vrtis R. F., Jarjour N. N., Bertics P. J., Sedgwick J. B.. ( 2006;). Urokinase-type plasminogen activator modulates airway eosinophil adhesion in asthma. Am J Respir Cell Mol Biol35:503–511 [CrossRef][PubMed]
    [Google Scholar]
  7. Chang Y. C., Kwon-Chung K. J.. ( 1994;). Complementation of a capsule-deficient mutation of Cryptococcus neoformans restores its virulence. Mol Cell Biol14:4912–4919[PubMed]
    [Google Scholar]
  8. Chang Y. C., Stins M. F., McCaffery M. J., Miller G. F., Pare D. R., Dam T., Paul-Satyaseel M., Kim K. S., Kwon-Chung K. J.. ( 2004;). Cryptococcal yeast cells invade the central nervous system via transcellular penetration of the blood-brain barrier. Infect Immun72:4985–4995 [CrossRef][PubMed]
    [Google Scholar]
  9. Charlier C., Chrétien F., Baudrimont M., Mordelet E., Lortholary O., Dromer F.. ( 2005;). Capsule structure changes associated with Cryptococcus neoformans crossing of the blood-brain barrier. Am J Pathol166:421–432 [CrossRef][PubMed]
    [Google Scholar]
  10. Charlier C., Nielsen K., Daou S., Brigitte M., Chretien F., Dromer F.. ( 2009;). Evidence of a role for monocytes in dissemination and brain invasion by Cryptococcus neoformans. . Infect Immun77:120–127 [CrossRef][PubMed]
    [Google Scholar]
  11. Chauhan S., Bisoi A. K., Rao B. H., Rao M. S., Saxena N., Venugopal P.. ( 2000;). Dosage of epsilon-aminocaproic acid to reduce postoperative blood loss. Asian Cardiovasc Thorac Ann8:15–18[CrossRef]
    [Google Scholar]
  12. Chen L. C., Blank E. S., Casadevall A.. ( 1996;). Extracellular proteinase activity of Cryptococcus neoformans. . Clin Diagn Lab Immunol3:570–574[PubMed]
    [Google Scholar]
  13. Chen S. C., Muller M., Zhou J. Z., Wright L. C., Sorrell T. C.. ( 1997;). Phospholipase activity in Cryptococcus neoformans: a new virulence factor?. J Infect Dis175:414–420 [CrossRef][PubMed]
    [Google Scholar]
  14. Chen S. H., Stins M. F., Huang S. H., Chen Y. H., Kwon-Chung K. J., Chang Y., Kim K. S., Suzuki K., Jong A. Y.. ( 2003;). Cryptococcus neoformans induces alterations in the cytoskeleton of human brain microvascular endothelial cells. J Med Microbiol52:961–970 [CrossRef][PubMed]
    [Google Scholar]
  15. Cole J. N., McArthur J. D., McKay F. C., Sanderson-Smith M. L., Cork A. J., Ranson M., Rohde M., Itzek A., Sun H.. & other authors ( 2006;). Trigger for group A streptococcal M1T1 invasive disease. FASEB J20:1745–1747 [CrossRef][PubMed]
    [Google Scholar]
  16. Coleman J. L., Gebbia J. A., Piesman J., Degen J. L., Bugge T. H., Benach J. L.. ( 1997;). Plasminogen is required for efficient dissemination of B. burgdorferi in ticks and for enhancement of spirochetemia in mice. Cell89:1111–1119 [CrossRef][PubMed]
    [Google Scholar]
  17. Cork A. J., Jergic S., Hammerschmidt S., Kobe B., Pancholi V., Benesch J. L., Robinson C. V., Dixon N. E., Aquilina J. A., Walker M. J.. ( 2009;). Defining the structural basis of human plasminogen binding by streptococcal surface enolase. J Biol Chem284:17129–17137 [CrossRef][PubMed]
    [Google Scholar]
  18. Crowe J. D., Sievwright I. K., Auld G. C., Moore N. R., Gow N. A., Booth N. A.. ( 2003;). Candida albicans binds human plasminogen: identification of eight plasminogen-binding proteins. Mol Microbiol47:1637–1651 [CrossRef][PubMed]
    [Google Scholar]
  19. D’Souza C. A., Hagen F., Boekhout T., Cox G. M., Heitman J.. ( 2004;). Investigation of the basis of virulence in serotype A strains of Cryptococcus neoformans from apparently immunocompetent individuals. Curr Genet46:92–102 [CrossRef][PubMed]
    [Google Scholar]
  20. Del Rosso M., Fibbi G., Pucci M., Margheri F., Serrati S.. ( 2008;). The plasminogen activation system in inflammation. Front Biosci13:4667–4686 [CrossRef][PubMed]
    [Google Scholar]
  21. Dong Z. M., Murphy J. W.. ( 1995;). Effects of the two varieties of Cryptococcus neoformans cells and culture filtrate antigens on neutrophil locomotion. Infect Immun63:2632–2644[PubMed]
    [Google Scholar]
  22. Ellis V.. ( 2003;). Plasminogen activation at the cell surface. Curr Top Dev Biol54:263–312 [CrossRef][PubMed]
    [Google Scholar]
  23. Foster A. J., Bird R. A., Kelly S. L., Nishimura K., Poyner D., Taylor S., Smith S. N.. ( 2004;). FITC-lectin avidity of Cryptococcus neoformans cell wall and capsular components. Mycologia96:1–8 [CrossRef][PubMed]
    [Google Scholar]
  24. Fox D., Smulian A. G.. ( 2001;). Plasminogen-binding activity of enolase in the opportunistic pathogen Pneumocystis carinii. . Med Mycol39:495–507[PubMed][CrossRef]
    [Google Scholar]
  25. Franzot S. P., Mukherjee J., Cherniak R., Chen L. C., Hamdan J. S., Casadevall A.. ( 1998;). Microevolution of a standard strain of Cryptococcus neoformans resulting in differences in virulence and other phenotypes. Infect Immun66:89–97[PubMed]
    [Google Scholar]
  26. Franzot S. P., Salkin I. F., Casadevall A.. ( 1999;). Cryptococcus neoformans var. grubii: separate varietal status for Cryptococcus neoformans serotype A isolates. J Clin Microbiol37:838–840[PubMed]
    [Google Scholar]
  27. Gebbia J. A., Monco J. C., Degen J. L., Bugge T. H., Benach J. L.. ( 1999;). The plasminogen activation system enhances brain and heart invasion in murine relapsing fever borreliosis. J Clin Invest103:81–87 [CrossRef][PubMed]
    [Google Scholar]
  28. Goguen J. D., Bugge T., Degen J. L.. ( 2000;). Role of the pleiotropic effects of plasminogen deficiency in infection experiments with plasminogen-deficient mice. Methods21:179–183 [CrossRef][PubMed]
    [Google Scholar]
  29. Goldman D., Lee S. C., Casadevall A.. ( 1994;). Pathogenesis of pulmonary Cryptococcus neoformans infection in the rat. Infect Immun62:4755–4761[PubMed]
    [Google Scholar]
  30. Granger D. L., Perfect J. R., Durack D. T.. ( 1985;). Virulence of Cryptococcus neoformans. Regulation of capsule synthesis by carbon dioxide. J Clin Invest76:508–516 [CrossRef][PubMed]
    [Google Scholar]
  31. Guimarães A. H., Laurens N., Weijers E. M., Koolwijk P., van Hinsbergh V. W., Rijken D. C.. ( 2007;). TAFI and pancreatic carboxypeptidase B modulate in vitro capillary tube formation by human microvascular endothelial cells. Arterioscler Thromb Vasc Biol27:2157–2162 [CrossRef][PubMed]
    [Google Scholar]
  32. Hajjar K. A., Jacovina A. T., Chacko J.. ( 1994;). An endothelial cell receptor for plasminogen/tissue plasminogen activator. I. Identity with annexin II. J Biol Chem269:21191–21197[PubMed]
    [Google Scholar]
  33. Hancock K., Tsang V. C.. ( 1983;). India ink staining of proteins on nitrocellulose paper. Anal Biochem133:157–162 [CrossRef][PubMed]
    [Google Scholar]
  34. Henkel R. D., VandeBerg J. L., Walsh R. A.. ( 1988;). A microassay for ATPase. Anal Biochem169:312–318 [CrossRef][PubMed]
    [Google Scholar]
  35. Ibrahim A. S., Filler S. G., Alcouloumre M. S., Kozel T. R., Edwards J. E. Jr, Ghannoum M. A.. ( 1995a;). Adherence to and damage of endothelial cells by Cryptococcus neoformans in vitro: role of the capsule. Infect Immun63:4368–4374[PubMed]
    [Google Scholar]
  36. Ibrahim A. S., Mirbod F., Filler S. G., Banno Y., Cole G. T., Kitajima Y., Edwards J. E. Jr, Nozawa Y., Ghannoum M. A.. ( 1995b;). Evidence implicating phospholipase as a virulence factor of Candida albicans. . Infect Immun63:1993–1998[PubMed]
    [Google Scholar]
  37. Idnurm A., Bahn Y. S., Nielsen K., Lin X., Fraser J. A., Heitman J.. ( 2005;). Deciphering the model pathogenic fungus Cryptococcus neoformans. . Nat Rev Microbiol3:753–764 [CrossRef][PubMed]
    [Google Scholar]
  38. Jong A. Y., Chen S. H., Stins M. F., Kim K. S., Tuan T. L., Huang S. H.. ( 2003;). Binding of Candida albicans enolase to plasmin(ogen) results in enhanced invasion of human brain microvascular endothelial cells. J Med Microbiol52:615–622 [CrossRef][PubMed]
    [Google Scholar]
  39. Jong A., Wu C. H., Chen H. M., Luo F., Kwon-Chung K. J., Chang Y. C., Lamunyon C. W., Plaas A., Huang S. H.. ( 2007;). Identification and characterization of CPS1 as a hyaluronic acid synthase contributing to the pathogenesis of Cryptococcus neoformans infection. Eukaryot Cell6:1486–1496 [CrossRef][PubMed]
    [Google Scholar]
  40. Jong A., Wu C. H., Prasadarao N. V., Kwon-Chung K. J., Chang Y. C., Ouyang Y., Shackleford G. M., Huang S. H.. ( 2008a;). Invasion of Cryptococcus neoformans into human brain microvascular endothelial cells requires protein kinase C-α activation. Cell Microbiol10:1854–1865 [CrossRef][PubMed]
    [Google Scholar]
  41. Jong A., Wu C. H., Shackleford G. M., Kwon-Chung K. J., Chang Y. C., Chen H. M., Ouyang Y., Huang S. H.. ( 2008b;). Involvement of human CD44 during Cryptococcus neoformans infection of brain microvascular endothelial cells. Cell Microbiol10:1313–1326 [CrossRef][PubMed]
    [Google Scholar]
  42. Kim K. S.. ( 2008;). Mechanisms of microbial traversal of the blood-brain barrier. Nat Rev Microbiol6:625–634 [CrossRef][PubMed]
    [Google Scholar]
  43. Kovacs J. A., Kovacs A. A., Polis M., Wright W. C., Gill V. J., Tuazon C. U., Gelmann E. P., Lane H. C., Longfield R.. & other authors ( 1985;). Cryptococcosis in the acquired immunodeficiency syndrome. Ann Intern Med103:533–538[PubMed][CrossRef]
    [Google Scholar]
  44. Kozel T. R., Gotschlich E. C.. ( 1982;). The capsule of Cryptococcus neoformans passively inhibits phagocytosis of the yeast by macrophages. J Immunol129:1675–1680[PubMed]
    [Google Scholar]
  45. Kukkonen M., Suomalainen M., Kyllönen P., Lähteenmäki K., Lång H., Virkola R., Helander I. M., Holst O., Korhonen T. K.. ( 2004;). Lack of O-antigen is essential for plasminogen activation by Yersinia pestis and Salmonella enterica. . Mol Microbiol51:215–225 [CrossRef][PubMed]
    [Google Scholar]
  46. Kwon-Chung K.. ( 1992;). Cryptococcosis. Medical Mycology397–446 Kwon-Chung K., Bennett J.. Philadelphia: Lea & Febiger;
    [Google Scholar]
  47. Kwon-Chung K. J., Bennett J. E.. ( 1984;). Epidemiologic differences between the two varieties of Cryptococcus neoformans. . Am J Epidemiol120:123–130[PubMed]
    [Google Scholar]
  48. Lähteenmäki K., Kuusela P., Korhonen T. K.. ( 2001;). Bacterial plasminogen activators and receptors. FEMS Microbiol Rev25:531–552 [CrossRef][PubMed]
    [Google Scholar]
  49. Lathem W. W., Price P. A., Miller V. L., Goldman W. E.. ( 2007;). A plasminogen-activating protease specifically controls the development of primary pneumonic plague. Science315:509–513 [CrossRef][PubMed]
    [Google Scholar]
  50. Lee S. C., Dickson D. W., Casadevall A.. ( 1996;). Pathology of cryptococcal meningoencephalitis: analysis of 27 patients with pathogenetic implications. Hum Pathol27:839–847 [CrossRef][PubMed]
    [Google Scholar]
  51. Leidich S. D., Ibrahim A. S., Fu Y., Koul A., Jessup C., Vitullo J., Fonzi W., Mirbod F., Nakashima S.. & other authors ( 1998;). Cloning and disruption of caPLB1, a phospholipase B gene involved in the pathogenicity of Candida albicans. . J Biol Chem273:26078–26086 [CrossRef][PubMed]
    [Google Scholar]
  52. Levitz S. M., DiBenedetto D. J.. ( 1989;). Paradoxical role of capsule in murine bronchoalveolar macrophage-mediated killing of Cryptococcus neoformans. . J Immunol142:659–665[PubMed]
    [Google Scholar]
  53. Lipovsky M. M., Gekker G., Hu S., Ehrlich L. C., Hoepelman A. I., Peterson P. K.. ( 1998;). Cryptococcal glucuronoxylomannan induces interleukin (IL)-8 production by human microglia but inhibits neutrophil migration toward IL-8. J Infect Dis177:260–263 [CrossRef][PubMed]
    [Google Scholar]
  54. Litvintseva A. P., Mitchell T. G.. ( 2009;). Most environmental isolates of Cryptococcus neoformans var. grubii (serotype A) are not lethal for mice. Infect Immun77:3188–3195 [CrossRef][PubMed]
    [Google Scholar]
  55. Litvintseva A. P., Thakur R., Vilgalys R., Mitchell T. G.. ( 2006;). Multilocus sequence typing reveals three genetic subpopulations of Cryptococcus neoformans var. grubii (serotype A), including a unique population in Botswana. Genetics172:2223–2238 [CrossRef][PubMed]
    [Google Scholar]
  56. Loftus B. J., Fung E., Roncaglia P., Rowley D., Amedeo P., Bruno D., Vamathevan J., Miranda M., Anderson I. J.. & other authors ( 2005;). The genome of the basidiomycetous yeast and human pathogen Cryptococcus neoformans. . Science307:1321–1324 [CrossRef][PubMed]
    [Google Scholar]
  57. Melchor J. P., Strickland S.. ( 2005;). Tissue plasminogen activator in central nervous system physiology and pathology. Thromb Haemost93:655–660[PubMed]
    [Google Scholar]
  58. Miles L. A., Levin E. G., Plescia J., Collen D., Plow E. F.. ( 1988;). Plasminogen receptors, urokinase receptors, and their modulation on human endothelial cells. Blood72:628–635[PubMed]
    [Google Scholar]
  59. Miles L. A., Hawley S. B., Baik N., Andronicos N. M., Castellino F. J., Parmer R. J.. ( 2005;). Plasminogen receptors: the sine qua non of cell surface plasminogen activation. Front Biosci10:1754–1762[PubMed]
    [Google Scholar]
  60. Monaco S., Gioia M., Rodriguez J., Fasciglione G. F., Di Pierro D., Lupidi G., Krippahl L., Marini S., Coletta M.. ( 2007;). Modulation of the proteolytic activity of matrix metalloproteinase-2 (gelatinase A) on fibrinogen. Biochem J402:503–513 [CrossRef][PubMed]
    [Google Scholar]
  61. Mukherjee P. K. G. M. A.. ( 2001;). Secretory proteins in fungal virulence. Fungal Pathogenesis – Principles and Clinical Applications Calderone R. A., Cihlar R. L.. New York: Marcel Dekker.
    [Google Scholar]
  62. Naglik J. R., Rodgers C. A., Shirlaw P. J., Dobbie J. L., Fernandes-Naglik L. L., Greenspan D., Agabian N., Challacombe S. J.. ( 2003;). Differential expression of Candida albicans secreted aspartyl proteinase and phospholipase B genes in humans correlates with active oral and vaginal infections. J Infect Dis188:469–479 [CrossRef][PubMed]
    [Google Scholar]
  63. Nogueira S. V., Fonseca F. L., Rodrigues M. L., Mundodi V., Abi-Chacra E. A., Winters M. S., Alderete J. F., de Almeida Soares C. M.. ( 2010;). Paracoccidioides brasiliensis enolase is a surface protein that binds plasminogen and mediates interaction of yeast forms with host cells. Infect Immun78:4040–4050 [CrossRef][PubMed]
    [Google Scholar]
  64. O’Meara T. R., Norton D., Price M. S., Hay C., Clements M. F., Nichols C. B., Alspaugh J. A.. ( 2010;). Interaction of Cryptococcus neoformans Rim101 and protein kinase A regulates capsule. PLoS Pathog6:e1000776 [CrossRef][PubMed]
    [Google Scholar]
  65. Olszewski M. A., Noverr M. C., Chen G. H., Toews G. B., Cox G. M., Perfect J. R., Huffnagle G. B.. ( 2004;). Urease expression by Cryptococcus neoformans promotes microvascular sequestration, thereby enhancing central nervous system invasion. Am J Pathol164:1761–1771 [CrossRef][PubMed]
    [Google Scholar]
  66. Pai M. P., Sakoglu U., Peterson S. L., Lyons C. R., Sood R.. ( 2009;). Characterization of BBB permeability in a preclinical model of cryptococcal meningoencephalitis using magnetic resonance imaging. J Cereb Blood Flow Metab29:545–553 [CrossRef][PubMed]
    [Google Scholar]
  67. Pancholi V., Fontan P., Jin H.. ( 2003;). Plasminogen-mediated group A streptococcal adherence to and pericellular invasion of human pharyngeal cells. Microb Pathog35:293–303 [CrossRef][PubMed]
    [Google Scholar]
  68. Pepper M. S.. ( 2001;). Role of the matrix metalloproteinase and plasminogen activator–plasmin systems in angiogenesis. Arterioscler Thromb Vasc Biol21:1104–1117 [CrossRef][PubMed]
    [Google Scholar]
  69. Pepper M. S., Montesano R., Mandriota S. J., Orci L., Vassalli J. D.. ( 1996;). Angiogenesis: a paradigm for balanced extracellular proteolysis during cell migration and morphogenesis. Enzyme Protein49:138–162[PubMed]
    [Google Scholar]
  70. Plow E. F., Felez J., Miles L. A.. ( 1991;). Cellular regulation of fibrinolysis. Thromb Haemost66:32–36[PubMed]
    [Google Scholar]
  71. Plow E. F., Herren T., Redlitz A., Miles L. A., Hoover-Plow J. L.. ( 1995;). The cell biology of the plasminogen system. FASEB J9:939–945[PubMed]
    [Google Scholar]
  72. Potempa J., Pike R. N.. ( 2009;). Corruption of innate immunity by bacterial proteases. J Innate Immun1:70–87 [CrossRef][PubMed]
    [Google Scholar]
  73. Quan X., Godfrey H. P.. ( 1998;). In vitro study of cytokine-mediated activation of endothelial cell permeability using Falcon® cell culture inserts. Tech Bull413:1–3
    [Google Scholar]
  74. Reese A. J., Doering T. L.. ( 2003;). Cell wall α-1,3-glucan is required to anchor the Cryptococcus neoformans capsule. Mol Microbiol50:1401–1409 [CrossRef][PubMed]
    [Google Scholar]
  75. Reijerkerk A., Mosnier L. O., Kranenburg O., Bouma B. N., Carmeliet P., Drixler T., Meijers J. C., Voest E. E., Gebbink M. F.. ( 2003;). Amyloid endostatin induces endothelial cell detachment by stimulation of the plasminogen activation system. Mol Cancer Res1:561–568[PubMed]
    [Google Scholar]
  76. Rodrigues M. L., Nimrichter L., Oliveira D. L., Frases S., Miranda K., Zaragoza O., Alvarez M., Nakouzi A., Feldmesser M., Casadevall A.. ( 2007;). Vesicular polysaccharide export in Cryptococcus neoformans is a eukaryotic solution to the problem of fungal trans-cell wall transport. Eukaryot Cell6:48–59 [CrossRef][PubMed]
    [Google Scholar]
  77. Romer J., Bugge T. H., Fyke C., Lund L. R., Flick M. J., Degen J. L., Dano K.. ( 1996;). Impaired wound healing in mice with a disrupted plasminogen gene. Nat Med2:287–292 [CrossRef][PubMed]
    [Google Scholar]
  78. Schatteman G. C., Dunnwald M., Jiao C.. ( 2007;). Biology of bone marrow-derived endothelial cell precursors. Am J Physiol Heart Circ Physiol292:H1–H18 [CrossRef][PubMed]
    [Google Scholar]
  79. Sebbane F., Jarrett C. O., Gardner D., Long D., Hinnebusch B. J.. ( 2006;). Role of the Yersinia pestis plasminogen activator in the incidence of distinct septicemic and bubonic forms of flea-borne plague. Proc Natl Acad Sci U S A103:5526–5530 [CrossRef][PubMed]
    [Google Scholar]
  80. Shi M., Li S. S., Zheng C., Jones G. J., Kim K. S., Zhou H., Kubes P., Mody C. H.. ( 2010;). Real-time imaging of trapping and urease-dependent transmigration of Cryptococcus neoformans in mouse brain. J Clin Invest120:1683–1693 [CrossRef][PubMed]
    [Google Scholar]
  81. Sodeinde O. A., Subrahmanyam Y. V., Stark K., Quan T., Bao Y., Goguen J. D.. ( 1992;). A surface protease and the invasive character of plague. Science258:1004–1007 [CrossRef][PubMed]
    [Google Scholar]
  82. Stie J., Bruni G., Fox D.. ( 2009;). Surface-associated plasminogen binding of Cryptococcus neoformans promotes extracellular matrix invasion. PLoS ONE4:e5780 [CrossRef][PubMed]
    [Google Scholar]
  83. Sun H., Ringdahl U., Homeister J. W., Fay W. P., Engleberg N. C., Yang A. Y., Rozek L. S., Wang X., Sjöbring U., Ginsburg D.. ( 2004;). Plasminogen is a critical host pathogenicity factor for group A streptococcal infection. Science305:1283–1286 [CrossRef][PubMed]
    [Google Scholar]
  84. Tkachuk V. A., Plekhanova O. S., Parfyonova Y. V.. ( 2009;). Regulation of arterial remodeling and angiogenesis by urokinase-type plasminogen activator. Can J Physiol Pharmacol87:231–251 [CrossRef][PubMed]
    [Google Scholar]
  85. Tuma P. L., Hubbard A. L.. ( 2003;). Transcytosis: crossing cellular barriers. Physiol Rev83:871–932[PubMed][CrossRef]
    [Google Scholar]
  86. Vecchiarelli A., Retini C., Monari C., Tascini C., Bistoni F., Kozel T. R.. ( 1996;). Purified capsular polysaccharide of Cryptococcus neoformans induces interleukin-10 secretion by human monocytes. Infect Immun64:2846–2849[PubMed]
    [Google Scholar]
  87. Velagapudi R., Hsueh Y. P., Geunes-Boyer S., Wright J. R., Heitman J.. ( 2009;). Spores as infectious propagules of Cryptococcus neoformans. . Infect Immun77:4345–4355 [CrossRef][PubMed]
    [Google Scholar]
  88. Verstraete M.. ( 1985;). Clinical application of inhibitors of fibrinolysis. Drugs29:236–261 [CrossRef][PubMed]
    [Google Scholar]
  89. Vidotto V., Melhem M., Pukinskas S., Aoki S., Carrara C., Pugliese A.. ( 2005;). Extracellular enzymatic activity and serotype of Cryptococcus neoformans strains isolated from AIDS patients in Brazil. Rev Iberoam Micol22:29–33 [CrossRef][PubMed]
    [Google Scholar]
  90. Vidotto V., Ito-Kuwa S., Nakamura K., Aoki S., Melhem M., Fukushima K., Bollo E.. ( 2006;). Extracellular enzymatic activities in Cryptococcus neoformans strains isolated from AIDS patients in different countries. Rev Iberoam Micol23:216–220 [CrossRef][PubMed]
    [Google Scholar]
  91. Whittington A., Wang P.. ( 2011;). The RGS protein Crg2 is required for establishment and progression of murine pulmonary cryptococcosis. Med Mycol49:263–275 [CrossRef][PubMed]
    [Google Scholar]
  92. Wolff E. C., Schirmer E. W., Folk J. E.. ( 1962;). The kinetics of carboxypeptidase B activity. J Biol Chem237:3094–3099[PubMed]
    [Google Scholar]
  93. Wong V. L., Gumbiner B. M.. ( 1997;). A synthetic peptide corresponding to the extracellular domain of occludin perturbs the tight junction permeability barrier. J Cell Biol136:399–409 [CrossRef][PubMed]
    [Google Scholar]
  94. Zaas A. K., Liao G., Chien J. W., Weinberg C., Shore D., Giles S. S., Marr K. A., Usuka J., Burch L. H.. & other authors ( 2008;). Plasminogen alleles influence susceptibility to invasive aspergillosis. PLoS Genet4:e1000101 [CrossRef][PubMed]
    [Google Scholar]
  95. Zaragoza O., Casadevall A.. ( 2004;). Experimental modulation of capsule size in Cryptococcus neoformans. . Biol Proced Online6:10–15 [CrossRef][PubMed]
    [Google Scholar]
  96. Zaragoza O., Chrisman C. J., Castelli M. V., Frases S., Cuenca-Estrella M., Rodríguez-Tudela J. L., Casadevall A.. ( 2008;). Capsule enlargement in Cryptococcus neoformans confers resistance to oxidative stress suggesting a mechanism for intracellular survival. Cell Microbiol10:2043–2057 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.051524-0
Loading
/content/journal/micro/10.1099/mic.0.051524-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error