1887

Abstract

Type 1 fimbriae produced by serovars of are characterized by their ability to agglutinate guinea pig erythrocytes in the absence of -mannose but not in its presence. The FimH protein is the adhesin that mediates this reaction; it is distinct from the major fimbrial protei.n (FimA) that composes the fimbrial shaft. Avian-adapted serovars of produce non-haemagglutinating fimbriae that have been reported to mediate adherence to avian cells. A single amino acid substitution is present in the FimH adhesin of these strains compared to that of a Typhimurium isolate. Also, previous studies have shown that single nucleotide polymorphisms in two strains of the Typhimurium alter the binding specificity. We therefore investigated the allelic variation of from a range of serotypes (both host-adapted and non-host-adapted) and isolates of . Most FimH adhesins mediated the mannose-sensitive haemagglutination of guinea pig erythrocytes, but many did not facilitate adherence to HEp-2 cells. A small number of isolates also produced fimbriae but did not mediate adherence to either cell type. Transformants possessing cloned genes exhibited a number of different substitutions within the predicted amino acid sequence of the FimH polypeptide. No identical FimH amino sequence was found between strains that adhere to erythrocytes and/or HEp-2 cells and those produced by non-adherent strains. FimH-mediated adherence to HEp-2 cells was invariably associated with the ability to form biofilms on mannosylated bovine serum albumin.

Funding
This study was supported by the:
  • , National Institutes of Health, Bethesda, MD, USA , (Award RO1 AI0746993 and RO1 GM084318)
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.051425-0
2011-11-01
2020-12-04
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/11/3162.html?itemId=/content/journal/micro/10.1099/mic.0.051425-0&mimeType=html&fmt=ahah

References

  1. Althouse C., Patterson S., Fedorka-Cray P., Isaacson R. E. ( 2003). Type 1 fimbriae of Salmonella enterica serovar Typhimurium bind to enterocytes and contribute to colonization of swine in vivo. Infect Immun 71:6446–6452 [CrossRef][PubMed]
    [Google Scholar]
  2. Bäumler A. J., Tsolis R. M., Heffron F. ( 1996). Contribution of fimbrial operons to attachment to and invasion of epithelial cell lines by Salmonella typhimurium . Infect Immun 64:1862–1865[PubMed]
    [Google Scholar]
  3. Boddicker J. D., Ledeboer N. A., Jagnow J., Jones B. D., Clegg S. ( 2002). Differential binding to and biofilm formation on Hep-2 cells by Salmonella enterica serovar Typhimurium is dependent upon allelic variation in the fimH gene of the fim gene cluster. Mol Microbiol 45:1255–1265 [CrossRef][PubMed]
    [Google Scholar]
  4. Boyd E. F., Hartl D. L. ( 1999). Analysis of the type 1 pilin gene cluster fim in Salmonella: its distinct evolutionary histories in the 5′ and 3′ regions. J Bacteriol 181:1301–1308[PubMed]
    [Google Scholar]
  5. Chattopadhyay S., Weissman S. J., Minin V. N., Russo T. A., Dykhuizen D. E., Sokurenko E. V. ( 2009). High frequency of hotspot mutations in core genes of Escherichia coli due to short-term positive selection. Proc Natl Acad Sci U S A 106:12412–12417 [CrossRef][PubMed]
    [Google Scholar]
  6. Clegg S., Hughes K. T. ( 2002). FimZ is a molecular link between sticking and swimming in Salmonella enterica serovar Typhimurium. J Bacteriol 184:1209–1213 [CrossRef][PubMed]
    [Google Scholar]
  7. Clegg S., Hull S., Hull R., Pruckler J. ( 1985). Construction and comparison of recombinant plasmids encoding type 1 fimbriae of members of the family Enterobacteriaceae . Infect Immun 48:275–279[PubMed]
    [Google Scholar]
  8. Clegg S., Hancox L. S., Yeh K. S. ( 1996). Salmonella typhimurium fimbrial phase variation and FimA expression. J Bacteriol 178:542–545[PubMed]
    [Google Scholar]
  9. De Buck J., Van Immerseel F., Haesebrouck F., Ducatelle R. ( 2004). Effect of type 1 fimbriae of Salmonella enterica serotype Enteritidis on bacteraemia and reproductive tract infection in laying hens. Avian Pathol 33:314–320 [CrossRef][PubMed]
    [Google Scholar]
  10. Duguid J. P. ( 1959). Fimbriae and adhesive properties in Klebsiella strains. J Gen Microbiol 21:271–286[PubMed] [CrossRef]
    [Google Scholar]
  11. Duguid J. P., Campbell I. ( 1969). Antigens of the type-1 fimbriae of salmonellae and other enterobacteria. J Med Microbiol 2:535–553 [CrossRef][PubMed]
    [Google Scholar]
  12. Duguid J. P., Anderson E. S., Campbell I. ( 1966). Fimbriae and adhesive properties in salmonellae. J Pathol Bacteriol 92:107–138 [CrossRef][PubMed]
    [Google Scholar]
  13. Duguid J. P., Darekar M. R., Wheater D. W. ( 1976). Fimbriae and infectivity in Salmonella typhimurium . J Med Microbiol 9:459–473 [CrossRef][PubMed]
    [Google Scholar]
  14. Guo A., Cao S., Tu L., Chen P., Zhang C., Jia A., Yang W., Liu Z., Chen H., Schifferli D. M. ( 2009). FimH alleles direct preferential binding of Salmonella to distinct mammalian cells or to avian cells. Microbiology 155:1623–1633 [CrossRef][PubMed]
    [Google Scholar]
  15. Hancox L. S., Yeh K. S., Clegg S. ( 1997). Construction and characterization of type 1 non-fimbriate and non-adhesive mutants of Salmonella typhimurium . FEMS Immunol Med Microbiol 19:289–296 [CrossRef][PubMed]
    [Google Scholar]
  16. Kisiela D., Kuczkowski M., Kiczak L., Wieliczko A., Ugorski M. ( 2005a). Differentiation of Salmonella Gallinarum biovar Gallinarum from Salmonella Gallinarum biovar Pullorum by PCR-RFLP of the fimH gene. J Vet Med B Infect Dis Vet Public Health 52:214–218[PubMed] [CrossRef]
    [Google Scholar]
  17. Kisiela D., Sapeta A., Kuczkowski M., Stefaniak T., Wieliczko A., Ugorski M. ( 2005b). Characterization of FimH adhesins expressed by Salmonella enterica serovar Gallinarum biovars Gallinarum and Pullorum: reconstitution of mannose-binding properties by single amino acid substitution. Infect Immun 73:6187–6190 [CrossRef][PubMed]
    [Google Scholar]
  18. Kisiela D., Laskowska A., Sapeta A., Kuczkowski M., Wieliczko A., Ugorski M. ( 2006). Functional characterization of the FimH adhesin from Salmonella enterica serovar Enteritidis. Microbiology 152:1337–1346 [CrossRef][PubMed]
    [Google Scholar]
  19. Madison B., Ofek I., Clegg S., Abraham S. N. ( 1994). Type 1 fimbrial shafts of Escherichia coli and Klebsiella pneumoniae influence sugar-binding specificities of their FimH adhesins. Infect Immun 62:843–848[PubMed]
    [Google Scholar]
  20. Merritt J. H., Kadouri D. E., O’Toole G. A. ( 2005). Growing and analyzing static biofilms. Curr Protoc Microbiol Chapter 1:1B–, 1[PubMed]
    [Google Scholar]
  21. Misselwitz B., Kreibich S. K., Rout S., Stecher B., Periaswamy B., Hardt W. D. ( 2011). Salmonella enterica serovar Typhimurium binds to HeLa cells via Fim-mediated reversible adhesion and irreversible type three secretion system 1-mediated docking. Infect Immun 79:330–341 [CrossRef][PubMed]
    [Google Scholar]
  22. Old D. C., Adegbola R. A. ( 1982). Haemagglutinins and fimbriae of Morganella, Proteus and Providencia . J Med Microbiol 15:551–564 [CrossRef][PubMed]
    [Google Scholar]
  23. Old D. C., Duguid J. P. ( 1970). Selective outgrowth of fimbriate bacteria in static liquid medium. J Bacteriol 103:447–456[PubMed]
    [Google Scholar]
  24. Old D. C., Payne S. B. ( 1971). Antigens of the type-2 fimbriae of salmonellae: “cross-reacting material” (CRM) of type-1 fimbriae. J Med Microbiol 4:215–225 [CrossRef][PubMed]
    [Google Scholar]
  25. Saini S., Pearl J. A., Rao C. V. ( 2009). Role of FimW, FimY, and FimZ in regulating the expression of type i fimbriae in Salmonella enterica serovar Typhimurium. J Bacteriol 191:3003–3010 [CrossRef][PubMed]
    [Google Scholar]
  26. Sokurenko E. V., Hasty D. L., Dykhuizen D. E. ( 1999). Pathoadaptive mutations: gene loss and variation in bacterial pathogens. Trends Microbiol 7:191–195 [CrossRef][PubMed]
    [Google Scholar]
  27. Sokurenko E. V., Feldgarden M., Trintchina E., Weissman S. J., Avagyan S., Chattopadhyay S., Johnson J. R., Dykhuizen D. E. ( 2004). Selection footprint in the FimH adhesin shows pathoadaptive niche differentiation in Escherichia coli . Mol Biol Evol 21:1373–1383 [CrossRef][PubMed]
    [Google Scholar]
  28. Stahlhut S. G., Chattopadhyay S., Struve C., Weissman S. J., Aprikian P., Libby S. J., Fang F. C., Krogfelt K. A., Sokurenko E. V. ( 2009a). Population variability of the FimH type 1 fimbrial adhesin in Klebsiella pneumoniae . J Bacteriol 191:1941–1950 [CrossRef][PubMed]
    [Google Scholar]
  29. Stahlhut S. G., Tchesnokova V., Struve C., Weissman S. J., Chattopadhyay S., Yakovenko O., Aprikian P., Sokurenko E. V., Krogfelt K. A. ( 2009b). Comparative structure-function analysis of mannose-specific FimH adhesins from Klebsiella pneumoniae and Escherichia coli . J Bacteriol 191:6592–6601 [CrossRef][PubMed]
    [Google Scholar]
  30. Swenson D. L., Clegg S., Old D. C. ( 1991). The frequency of fim genes among Salmonella serovars. Microb Pathog 10:487–492 [CrossRef][PubMed]
    [Google Scholar]
  31. Thorns C. J. ( 1995). Salmonella fimbriae: novel antigens in the detection and control of salmonella infections. Br Vet J 151:643–658 [CrossRef][PubMed]
    [Google Scholar]
  32. Tinker J. K., Clegg S. ( 2000). Characterization of FimY as a coactivator of type 1 fimbrial expression in Salmonella enterica serovar Typhimurium. Infect Immun 68:3305–3313 [CrossRef][PubMed]
    [Google Scholar]
  33. Tinker J. K., Hancox L. S., Clegg S. ( 2001). FimW is a negative regulator affecting type 1 fimbrial expression in Salmonella enterica serovar Typhimurium. J Bacteriol 183:435–442 [CrossRef][PubMed]
    [Google Scholar]
  34. van Asten A. J., van Dijk J. E. ( 2005). Distribution of “classic” virulence factors among Salmonella spp. FEMS Immunol Med Microbiol 44:251–259 [CrossRef][PubMed]
    [Google Scholar]
  35. Weissman S. J., Beskhlebnaya V., Chesnokova V., Chattopadhyay S., Stamm W. E., Hooton T. M., Sokurenko E. V. ( 2007). Differential stability and trade-off effects of pathoadaptive mutations in the Escherichia coli FimH adhesin. Infect Immun 75:3548–3555 [CrossRef][PubMed]
    [Google Scholar]
  36. Wilson R. L., Elthon J., Clegg S., Jones B. D. ( 2000). Salmonella enterica serovars Gallinarum and Pullorum expressing Salmonella enterica serovar Typhimurium type 1 fimbriae exhibit increased invasiveness for mammalian cells. Infect Immun 68:4782–4785 [CrossRef][PubMed]
    [Google Scholar]
  37. Yeh K. S., Hancox L. S., Clegg S. ( 1995). Construction and characterization of a fimZ mutant of Salmonella typhimurium. J Bacteriol 177:6861–6865[PubMed]
    [Google Scholar]
  38. Yeh K. S., Tinker J. K., Clegg S. ( 2002). FimZ binds the Salmonella typhimurium fimA promoter region and may regulate its own expression with FimY. Microbiol Immunol 46:1–10[PubMed] [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.051425-0
Loading
/content/journal/micro/10.1099/mic.0.051425-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error