1887

Abstract

Here we tested the hypothesis that species of the soil-inhabiting insect-pathogenic fungus are not randomly distributed in soils but show plant-rhizosphere-specific associations. We isolated from plant roots at two sites in Ontario, Canada, sequenced the 5′ EF-1α gene to discern species, and developed an RFLP test for rapid species identification. Results indicated a non-random association of three species (, and ) with the rhizosphere of certain types of plant species (identified to species and categorized as grasses, wildflowers, shrubs and trees). was the only species that was found associated with grass roots, suggesting a possible exclusion of and . Supporting this, experiments showed that conidia germinated significantly better in (switchgrass) root exudate than did or . and only associated with wildflower rhizosphere when co-occurring with . With the exception of these co-occurrences, was found to associate exclusively with the rhizosphere of tree species, predominantly (sugar maple), while was found to associate exclusively with the rhizosphere of shrubs and trees. These associations demonstrate that different species of associate with specific plant types.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.051102-0
2011-10-01
2020-09-30
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/10/2904.html?itemId=/content/journal/micro/10.1099/mic.0.051102-0&mimeType=html&fmt=ahah

References

  1. Bainard L. D., Brown P. D., Upadhyaya M. K.. ( 2009;). Inhibitory effect of tall hedge mustard (Sisymbrium loeselii) allelochemicals on rangeland plants and arbuscular mycorrhizal fungi. Weed Sci57:386–393 [CrossRef]
    [Google Scholar]
  2. Baldi A., Farkya S., Jain A., Gupta N., Mehra R., Datta V., Srivastava A. K., Bisaria V. S.. ( 2010;). Enhanced production of podophyllotoxins by co-culture of transformed Linum album cells with plant growth-promoting fungi. Pure Appl Chem82:227–241 [CrossRef]
    [Google Scholar]
  3. Bidochka M. J., Kamp A. M., Lavender T. M., Dekoning J., De Croos J. N. A.. ( 2001;). Habitat association in two genetic groups of the insect-pathogenic fungus Metarhizium anisopliae: uncovering cryptic species?. Appl Environ Microbiol67:1335–1342 [CrossRef][PubMed]
    [Google Scholar]
  4. Bidochka M. J., Small C. L., Spironello M.. ( 2005;). Recombination within sympatric cryptic species of the insect pathogenic fungus Metarhizium anisopliae . Environ Microbiol7:1361–1368 [CrossRef][PubMed]
    [Google Scholar]
  5. Bischoff J. F., Rehner S. A., Humber R. A.. ( 2006;). Metarhizium frigidum sp. nov.: a cryptic species of M. anisopliae and a member of the M. flavoviride complex. Mycologia98:737–745 [CrossRef][PubMed]
    [Google Scholar]
  6. Bischoff J. F., Rehner S. A., Humber R. A.. ( 2009;). A multilocus phylogeny of the Metarhizium anisopliae lineage. Mycologia101:512–530 [CrossRef][PubMed]
    [Google Scholar]
  7. Bridge P. D., Williams M. A. J., Prior C., Paterson R. R. M.. ( 1993;). Morphological, biochemical and molecular characteristics of Metarhizium anisopliae and M. flavoviride . J Gen Microbiol139:1163–1169[CrossRef]
    [Google Scholar]
  8. Bridge P. D., Prior C., Sagbohan J., Lomer C. J., Carey M., Buddie A.. ( 1997;). Molecular characterization of isolates of Metarhizium from locusts and grasshoppers. Biodivers Conserv6:177–189 [CrossRef]
    [Google Scholar]
  9. Bruck D. J.. ( 2005;). Ecology of Metarhizium anisopliae in soilless potting media and the rhizosphere: implications for pest management. Biol Control32:155–163 [CrossRef]
    [Google Scholar]
  10. Bruck D. J.. ( 2010;). Fungal entomopathogens in the rhizosphere. BioControl55:103–112 [CrossRef]
    [Google Scholar]
  11. Courty P. E., Poletto M., Duchaussoy F., Buée M., Garbaye J., Martin F.. ( 2008;). Gene transcription in Lactarius quietusQuercus petraea ectomycorrhizas from a forest soil. Appl Environ Microbiol74:6598–6605 [CrossRef][PubMed]
    [Google Scholar]
  12. Estrada-Luna A. A., Davies F. T. Jr, Egilla J. N.. ( 2000;). Mycorrhizal fungi enhancement of growth and gas exchange of micropropagated guava plantlets (Psidium guajava L.) during ex vitro acclimatization and plant establishment. Mycorrhiza10:1–8 [CrossRef]
    [Google Scholar]
  13. Fang W., Pei Y., Bidochka M. J.. ( 2006;). Transformation of Metarhizium anisopliae mediated by Agrobacterium tumefaciens . Can J Microbiol52:623–626 [CrossRef][PubMed]
    [Google Scholar]
  14. Fegan M., Manners J. M., Maclean D. J., Irwin J. A. G., Samuels K. D. Z., Holdom D. G., Li D. P.. ( 1993;). Random amplified polymorphic DNA markers reveal a high degree of genetic diversity in the entomopathogenic fungus Metarhizium anisopliae var. anisopliae . J Gen Microbiol139:2075–2081[PubMed][CrossRef]
    [Google Scholar]
  15. Felsenstein J.. ( 2009;). phylip (phylogeny inference package) version 3.69. Distributed by the author. Department of Genome Sciences, University of Washington; Seattle, USA:
  16. Felten J., Kohler A., Morin E., Bhalerao R. P., Palme K., Martin F., Ditengou F. A., Legué V.. ( 2009;). The ectomycorrhizal fungus Laccaria bicolor stimulates lateral root formation in poplar and Arabidopsis through auxin transport and signaling. Plant Physiol151:1991–2005 [CrossRef][PubMed]
    [Google Scholar]
  17. Hu G., St Leger R. J.. ( 2002;). Field studies using a recombinant mycoinsecticide (Metarhizium anisopliae) reveal that it is rhizosphere competent. Appl Environ Microbiol68:6383–6387 [CrossRef][PubMed]
    [Google Scholar]
  18. Hunter D. M., Milner R. J., Spurgin P. A.. ( 2001;). Aerial treatment of the Australian plague locust, Chortoicetes terminifera (Orthoptera: Acrididae) with Metarhizium anisopliae (Deuteromycotina: Hyphomycetes). Bull Entomol Res91:93–99[PubMed]
    [Google Scholar]
  19. Kennedy P. G., Peay K. G., Bruns T. D.. ( 2009;). Root tip competition among ectomycorrhizal fungi: are priority effects a rule or an exception?. Ecology90:2098–2107 [CrossRef][PubMed]
    [Google Scholar]
  20. Kernaghan G., Widden P., Bergeron Y., Legare S., Pare D.. ( 2003;). Biotic and abiotic factors affecting ectomycorrhizal diversity in boreal mixed-woods. Oikos102:497–504 [CrossRef]
    [Google Scholar]
  21. Klironomos J. N.. ( 2000;). Host-specificity and functional diversity among arbuscular mycorrhizal fungi. Microbial Biosystems: New Frontiers. Proceedings of the 8th International Symposium on Microbial Ecology 845–851 Bell C. R., Brylinsky M., Johnson-Green P.. Halifax, Canada: Atlantic Canada Society for Microbial Ecology;
    [Google Scholar]
  22. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A. et al. & other authors ( 2007;). clustal w and clustal_x version 2.0. Bioinformatics23:2947–2948 [CrossRef][PubMed]
    [Google Scholar]
  23. Leal S. C. M., Bertioli D. J., Butt T. M., Peberdy J. F.. ( 1994;). Characterization of isolates of the entomopathogenic fungus Metarhizium anisopliae by RAPD-PCR. Mycol Res98:1077–1081 [CrossRef]
    [Google Scholar]
  24. Leal S. C. M., Bertioli D. J., Butt T. M., Carder J. H., Burrows P. R., Peberdy J. F.. ( 1997;). Amplification and restriction endonuclease digestion of the Pr1 gene for the detection and characterization of Metarhizium strains. Mycol Res101:257–265 [CrossRef]
    [Google Scholar]
  25. Lee J., Chang I. Y., Kim H., Yun S. H., Leslie J. F., Lee Y. W.. ( 2009;). Genetic diversity and fitness of Fusarium graminearum populations from rice in Korea. Appl Environ Microbiol75:3289–3295 [CrossRef][PubMed]
    [Google Scholar]
  26. Lomer C. J., Prior C., Kooyman C.. ( 1997;). Development of Metarhizium spp. for control of grasshoppers and locusts. Mem Entomol Soc Can129:265–286 [CrossRef]
    [Google Scholar]
  27. Lomer C. J., Bateman R. P., Johnson D. L., Langewald J., Thomas M.. ( 2001;). Biological control of locusts and grasshoppers. Annu Rev Entomol46:667–702 [CrossRef][PubMed]
    [Google Scholar]
  28. Maniania N. K., Sithanantham S., Ekesi S., Ampong-Nyarko K., Baumgartner J., Lohr B., Matoka C. M.. ( 2003;). A field trial of the entomogenous fungus Metarhizium anisopliae for control of onion thrips, Thrips tabaci . Crop Prot22:553–559 [CrossRef]
    [Google Scholar]
  29. Martin F., Nehls U.. ( 2009;). Harnessing ectomycorrhizal genomics for ecological insights. Curr Opin Plant Biol12:508–515 [CrossRef][PubMed]
    [Google Scholar]
  30. Miché L., Balandreau J.. ( 2001;). Effects of rice seed surface sterilization with hypochlorite on inoculated Burkholderia vietnamiensis . Appl Environ Microbiol67:3046–3052 [CrossRef][PubMed]
    [Google Scholar]
  31. Milner R. J., Pereira R. M.. ( 2000;). Microbial control of urban pest-cockroaches, ants and termites. Field Manual of Techniques in Invertebrate Pathology, 1st edn.721–740 Lacey L. A., Kaya H. K.. Boston, USA: Kluwer Academic Publishers; [CrossRef]
    [Google Scholar]
  32. Molina R., Massicotte H., Trappe J. M.. ( 1992;). Specificity phenomena in mycorrhizal symbioses: community-ecological consequences and practical implications. Mycorrhizal Functioning357–423 Allen M. F.. London, UK: Chapman & Hall;
    [Google Scholar]
  33. Pinior A., Wyss U., Piche Y., Vierheilig H.. ( 1999;). Plants colonized by AM fungi regulate further root colonization by AM fungi through altered root exudation. Can J Bot77:891–897
    [Google Scholar]
  34. Piotrowski J. S., Morford S. L., Rillig M. C.. ( 2008;). Inhibition of colonization by a native arbuscular mycorrhizal fungal community via Populus trichocarpa litter, litter extract, and soluble phenolic compounds. Soil Biol Biochem40:709–717 [CrossRef]
    [Google Scholar]
  35. Rai M., Acharya D., Singh A., Varma A.. ( 2001;). Positive growth responses of the medicinal plants Spilanthes calva and Withania somnifera to inoculation by Piriformospora indica in a field trial. Mycorrhiza11:123–128 [CrossRef]
    [Google Scholar]
  36. Rehner S. A., Buckley E.. ( 2005;). A Beauveria phylogeny inferred from nuclear ITS and EF1-α sequences: evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia97:84–98 [CrossRef][PubMed]
    [Google Scholar]
  37. Riba G., Bouvier-Fourcade I., Caudal A.. ( 1986;). Isoenzymes polymorphism in Metarhizium anisopliae (Deuteromycotina: Hyphomycetes) entomogenous fungi. Mycopathology96:161–169 [CrossRef]
    [Google Scholar]
  38. Shah P. A., Pell J. K.. ( 2003;). Entomopathogenic fungi as biological control agents. Appl Microbiol Biotechnol61:413–423[PubMed][CrossRef]
    [Google Scholar]
  39. Sirrenberg A., Göbel C., Grond S., Czempinski N., Ratzinger A., Karlovsky P., Santos P., Feussner I., Pawlowski K.. ( 2007;). Piriformospora indica affects plant growth by auxin production. Physiol Plant131:581–589 [CrossRef][PubMed]
    [Google Scholar]
  40. Small C. L., Donaldson N., Bidochka M. J.. ( 2004;). Nucleotide sequence variation does not relate to differences in kinetic properties of neutral trehalase from the insect pathogenic fungus Metarhizium anisopliae . Curr Microbiol48:428–434 [CrossRef][PubMed]
    [Google Scholar]
  41. Spatafora J. W., Sung G. H., Sung J. M., Hywel-Jones N. L., White J. F. Jr. ( 2007;). Phylogenetic evidence for an animal pathogen origin of ergot and the grass endophytes. Mol Ecol16:1701–1711 [CrossRef][PubMed]
    [Google Scholar]
  42. St Leger R. J., May B., Allee L. L., Frank D. C., Staples R. C., Roberts D. W.. ( 1992;). Genetic differences in allozymes and in formation of infection structures among isolates of the entomopathogenic fungus Metarhizium anisopliae . J Invertebr Pathol60:89–101 [CrossRef]
    [Google Scholar]
  43. Tigano-Milani M. S., Gomes A. C. M. M., Sobral B. W. S.. ( 1995;). Genetic variability among Brazilian isolates of the entomopathogenic fungus Metarhizium anisopliae . J Invertebr Pathol65:206–210 [CrossRef]
    [Google Scholar]
  44. van Tuinen D., Jacquot E., Zhao B., Gollotte A., Gianinazzi-Pearson V.. ( 1998;). Characterization of root colonization profiles by a microcosm community of arbuscular mycorrhizal fungi using 25S rDNA-targeted nested PCR. Mol Ecol7:879–887 [CrossRef][PubMed]
    [Google Scholar]
  45. Vega F. E., Goettel M. S., Blackwell M., Chandler D., Jackson M. A., Keller S., Koike M., Maniania N. K., Monzon A., Ownley B. H.. ( 2009;). Fungal entomopathogens: new insights on their ecology. Fungal Ecol2:149–159 [CrossRef]
    [Google Scholar]
  46. Vierheilig H., Lerat S., Piché Y.. ( 2003;). Systemic inhibition of arbuscular mycorrhiza development by root exudates of cucumber plants colonized by Glomus mosseae . Mycorrhiza13:167–170 [CrossRef][PubMed]
    [Google Scholar]
  47. Wang C., St Leger R. J.. ( 2007;). The MAD1 adhesin of Metarhizium anisopliae links adhesion with blastospore production and virulence to insects, and the MAD2 adhesin enables attachment to plants. Eukaryot Cell6:808–816 [CrossRef][PubMed]
    [Google Scholar]
  48. Wolfe B. E., Rodgers V. L., Stinson K. A., Pringle A.. ( 2008;). The invasive plant Alliaria petiolata (garlic mustard) inhibits ectomycorrhizal fungi in its introduced range. J Ecol96:777–783 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.051102-0
Loading
/content/journal/micro/10.1099/mic.0.051102-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error