1887

Abstract

Although Hildenborough (DvH) is a strictly anaerobic bacterium, it is able to consume oxygen in different cellular compartments, including extensive periplasmic O reduction with hydrogen as electron donor. The genome of DvH revealed the presence of and genes, encoding a quinol oxidase and a cytochrome oxidase, respectively. In the membranes of DvH, we detected both quinol oxygen reductase [inhibited by heptyl-hydroxyquinoline--oxide (HQNO)] and cytochrome oxidase activities. Spectral and HPLC data for the membrane fraction revealed the presence of -, - and type haems, in addition to a majority of -type haems, but no -type haem, in agreement with carbon monoxide-binding analysis. The cytochrome oxidase is thus of the (/) type, a type not previously described. The monohaem cytochrome is an electron donor to the cytochrome oxidase; its encoding gene is located upstream of the operon and is 50-fold more transcribed than encoding the cytochrome oxidase subunit I. Even when DvH is grown under anaerobic conditions in lactate/sulfate medium, the two terminal oxidase-encoding genes are expressed. Furthermore, the quinol oxidase -encoding genes are more highly expressed than the genes. The operon exhibits an atypical genomic organization, with the gene located downstream of . The occurrence of these membrane-bound oxygen reductases in other strictly anaerobic Deltaproteobacteria is discussed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.049171-0
2011-09-01
2019-12-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/9/2720.html?itemId=/content/journal/micro/10.1099/mic.0.049171-0&mimeType=html&fmt=ahah

References

  1. Abdollahi H. , Wimpenny J. . ( 1990; ). Effects of oxygen on the growth of Desulfovibrio desulfuricans . . J Gen Microbiol 136:, 1025–1030.[CrossRef]
    [Google Scholar]
  2. Baumgarten A. , Redenius I. , Kranczoch J. , Cypionka H. . ( 2001; ). Periplasmic oxygen reduction by Desulfovibrio species. . Arch Microbiol 176:, 306–309. [CrossRef] [PubMed]
    [Google Scholar]
  3. Bickar D. , Bonaventura C. , Bonaventura J. . ( 1984; ). Carbon monoxide-driven reduction of ferric heme and heme proteins. . J Biol Chem 259:, 10777–10783.[PubMed]
    [Google Scholar]
  4. Bradford M. M. . ( 1976; ). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. . Anal Biochem 72:, 248–254. [CrossRef] [PubMed]
    [Google Scholar]
  5. Brioukhanov A. L. , Durand M. C. , Dolla A. , Aubert C. . ( 2010; ). Response of Desulfovibrio vulgaris Hildenborough to hydrogen peroxide: enzymatic and transcriptional analyses. . FEMS Microbiol Lett 310:, 175–181. [CrossRef] [PubMed]
    [Google Scholar]
  6. Cobine P. A. , Pierrel F. , Winge D. R. . ( 2006; ). Copper trafficking to the mitochondrion and assembly of copper metalloenzymes. . Biochim Biophys Acta 1763:, 759–772. [CrossRef] [PubMed]
    [Google Scholar]
  7. Cypionka H. . ( 2000; ). Oxygen respiration by Desulfovibrio species. . Annu Rev Microbiol 54:, 827–848. [CrossRef] [PubMed]
    [Google Scholar]
  8. Cypionka H. , Widdel F. , Pfennig N. . ( 1985; ). Survival of sulfate-reducing bacteria after oxygen stress, and growth in sulfate-free oxygen sulfide gradients. . FEMS Microbiol Ecol 31:, 39–45. [CrossRef]
    [Google Scholar]
  9. Dannenberg S. , Kroder M. , Dilling W. , Cypionka H. . ( 1992; ). Oxidation of H2, organic compounds and inorganic sulfur compounds coupled to reduction of O2 or nitrate by sulfate-reducing bacteria. . Arch Microbiol 158:, 93–99. [CrossRef]
    [Google Scholar]
  10. Dolla A. , Fournier M. , Dermoun Z. . ( 2006; ). Oxygen defense in sulfate-reducing bacteria. . J Biotechnol 126:, 87–100. [CrossRef] [PubMed]
    [Google Scholar]
  11. Dolla A. , Kurtz D. M. , Teixeira M. , Voordouw G. . ( 2007; ). Biochemical, proteomic and genetic characterization of oxygen survival mechanisms in sulphate-reducing bacteria of the genus Desulfovibrio . . In Sulphate-Reducing Bacteria, Environmental and Engineered Systems, pp. 185–214. Edited by Barton L. L. , Hamilton W. A. . . Cambridge, UK:: Cambridge University Press;. [CrossRef]
    [Google Scholar]
  12. Fareleira P. , Santos B. S. , António C. , Moradas-Ferreira P. , LeGall J. , Xavier A. V. , Santos H. . ( 2003; ). Response of a strict anaerobe to oxygen: survival strategies in Desulfovibrio gigas . . Microbiology 149:, 1513–1522. [CrossRef] [PubMed]
    [Google Scholar]
  13. Fournier M. , Dermoun Z. , Durand M. C. , Dolla A. . ( 2004; ). A new function of the Desulfovibrio vulgaris Hildenborough [Fe] hydrogenase in the protection against oxidative stress. . J Biol Chem 279:, 1787–1793. [CrossRef] [PubMed]
    [Google Scholar]
  14. Fournier M. , Aubert C. , Dermoun Z. , Durand M. C. , Moinier D. , Dolla A. . ( 2006; ). Response of the anaerobe Desulfovibrio vulgaris Hildenborough to oxidative conditions: proteome and transcript analysis. . Biochimie 88:, 85–94. [CrossRef] [PubMed]
    [Google Scholar]
  15. Frazão C. , Silva G. , Gomes C. M. , Matias P. , Coelho R. , Sieker L. , Macedo S. , Liu M. Y. , Oliveira S. et al. ( 2000; ). Structure of a dioxygen reduction enzyme from Desulfovibrio gigas . . Nat Struct Biol 7:, 1041–1045. [CrossRef] [PubMed]
    [Google Scholar]
  16. Fröhlich J. , Sass H. , Babenzien H. D. , Kuhnigk T. , Varma A. , Saxena S. , Nalepa C. , Pfeiffer P. , König H. . ( 1999; ). Isolation of Desulfovibrio intestinalis sp. nov. from the hindgut of the lower termite Mastotermes darwiniensis . . Can J Microbiol 45:, 145–152.[PubMed] [CrossRef]
    [Google Scholar]
  17. Heidelberg J. F. , Seshadri R. , Haveman S. A. , Hemme C. L. , Paulsen I. T. , Kolonay J. F. , Eisen J. A. , Ward N. , Methe B. et al. ( 2004; ). The genome sequence of the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. . Nat Biotechnol 22:, 554–559. [CrossRef] [PubMed]
    [Google Scholar]
  18. Ito T. , Okabe S. , Satoh H. , Watanabe Y. . ( 2002; ). Successional development of sulfate-reducing bacterial populations and their activities in a wastewater biofilm growing under microaerophilic conditions. . Appl Environ Microbiol 68:, 1392–1402. [CrossRef] [PubMed]
    [Google Scholar]
  19. Jensen L. J. , Kuhn M. , Stark M. , Chaffron S. , Creevey C. , Muller J. , Doerks T. , Julien P. , Roth A. et al. ( 2009; ). STRING 8–a global view on proteins and their functional interactions in 630 organisms. . Nucleic Acids Res 37: (Database issue), D412–D416. [CrossRef] [PubMed]
    [Google Scholar]
  20. Johnson M. S. , Zhulin I. B. , Gapuzan M. E. , Taylor B. L. . ( 1997; ). Oxygen-dependent growth of the obligate anaerobe Desulfovibrio vulgaris Hildenborough. . J Bacteriol 179:, 5598–5601.[PubMed]
    [Google Scholar]
  21. Jünemann S. . ( 1997; ). Cytochrome bd terminal oxidase. . Biochim Biophys Acta 1321:, 107–127.[PubMed] [CrossRef]
    [Google Scholar]
  22. Kawasaki S. , Watamura Y. , Ono M. , Watanabe T. , Takeda K. , Niimura Y. . ( 2005; ). Adaptive responses to oxygen stress in obligatory anaerobes Clostridium acetobutylicum and Clostridium aminovalericum . . Appl Environ Microbiol 71:, 8442–8450. [CrossRef] [PubMed]
    [Google Scholar]
  23. Kawasaki S. , Sakai Y. , Takahashi T. , Suzuki I. , Niimura Y. . ( 2009; ). O2 and reactive oxygen species detoxification complex, composed of O2-responsive NADH : rubredoxin oxidoreductase-flavoprotein A2-desulfoferrodoxin operon enzymes, rubperoxin, and rubredoxin, in Clostridium acetobutylicum . . Appl Environ Microbiol 75:, 1021–1029. [CrossRef] [PubMed]
    [Google Scholar]
  24. Kitamura M. , Mizugai K. , Taniguchi M. , Akutsu H. , Kumagai I. , Nakaya T. . ( 1995; ). A gene encoding a cytochrome c oxidase-like protein is located closely to the cytochrome c-553 gene in the anaerobic bacterium, Desulfovibrio vulgaris (Miyazaki F). . Microbiol Immunol 39:, 75–80.[PubMed] [CrossRef]
    [Google Scholar]
  25. Kjeldsen K. U. , Joulian C. , Ingvorsen K. . ( 2004; ). Oxygen tolerance of sulfate-reducing bacteria in activated sludge. . Environ Sci Technol 38:, 2038–2043. [CrossRef] [PubMed]
    [Google Scholar]
  26. Kjeldsen K. U. , Joulian C. , Ingvorsen K. . ( 2005; ). Effects of oxygen exposure on respiratory activities of Desulfovibrio desulfuricans strain DvO1 isolated from activated sludge. . FEMS Microbiol Ecol 53:, 275–284. [CrossRef] [PubMed]
    [Google Scholar]
  27. Krekeler D. , Sigalevich P. , Teske A. , Cypionka H. , Cohen Y. . ( 1997; ). A sulfate-reducing bacterium from the oxic layer of a microbial mat from Solar Lake (Sinai), Desulfovibrio oxyclinae sp. nov. . Arch Microbiol 167:, 369–375. [CrossRef]
    [Google Scholar]
  28. Kuhnigk T. , Branke J. , Krekeler D. , Cypionka H. , Koenig H. . ( 1996; ). A feasible role of sulfate-reducing bacteria in the termite gut. . Syst Appl Microbiol 19:, 139–149.[CrossRef]
    [Google Scholar]
  29. Lauraeus M. , Haltia T. , Saraste M. , Wikström M. . ( 1991; ). Bacillus subtilis expresses two kinds of haem-A-containing terminal oxidases. . Eur J Biochem 197:, 699–705. [CrossRef] [PubMed]
    [Google Scholar]
  30. Le Fourn C. , Fardeau M. L. , Ollivier B. , Lojou E. , Dolla A. . ( 2008; ). The hyperthermophilic anaerobe Thermotoga maritima is able to cope with limited amount of oxygen: insights into its defence strategies. . Environ Microbiol 10:, 1877–1887. [CrossRef] [PubMed]
    [Google Scholar]
  31. Lemos R. S. , Gomes C. M. , Santana M. , LeGall J. , Xavier A. V. , Teixeira M. . ( 2001; ). The ‘strict’ anaerobe Desulfovibrio gigas contains a membrane-bound oxygen-reducing respiratory chain. . FEBS Lett 496:, 40–43. [CrossRef] [PubMed]
    [Google Scholar]
  32. Lobo S. A. , Almeida C. C. , Carita J. N. , Teixeira M. , Saraiva L. M. . ( 2008; ). The haem-copper oxygen reductase of Desulfovibrio vulgaris contains a dihaem cytochrome c in subunit II. . Biochim Biophys Acta 1777:, 1528–1534. [CrossRef] [PubMed]
    [Google Scholar]
  33. Lübben M. , Morand K. . ( 1994; ). Novel prenylated hemes as cofactors of cytochrome oxidases. Archaea have modified hemes A and O. . J Biol Chem 269:, 21473–21479.[PubMed]
    [Google Scholar]
  34. Marschall C. , Frenzel C. , Cypionka H. . ( 1993; ). Influence of oxygen on sulphate reduction and growth on sulfate-reducing bacteria. . Arch Microbiol 159:, 168–173. [CrossRef]
    [Google Scholar]
  35. Methé B. A. , Nelson K. E. , Eisen J. A. , Paulsen I. T. , Nelson W. , Heidelberg J. F. , Wu D. , Wu M. , Ward N. et al. ( 2003; ). Genome of Geobacter sulfurreducens: metal reduction in subsurface environments. . Science 302:, 1967–1969. [CrossRef] [PubMed]
    [Google Scholar]
  36. Mukhopadhyay A. , Redding A. M. , Joachimiak M. P. , Arkin A. P. , Borglin S. E. , Dehal P. S. , Chakraborty R. , Geller J. T. , Hazen T. C. et al. ( 2007; ). Cell-wide responses to low-oxygen exposure in Desulfovibrio vulgaris Hildenborough. . J Bacteriol 189:, 5996–6010. [CrossRef] [PubMed]
    [Google Scholar]
  37. Mussmann M. , Ishii K. , Rabus R. , Amann R. . ( 2005; ). Diversity and vertical distribution of cultured and uncultured Deltaproteobacteria in an intertidal mud flat of the Wadden Sea. . Environ Microbiol 7:, 405–418. [CrossRef] [PubMed]
    [Google Scholar]
  38. Ozawa K. , Mogi T. , Suzuki M. , Kitamura M. , Nakaya T. , Anraku Y. , Akutsu H. . ( 1997; ). Membrane-bound cytochromes in a sulfate-reducing strict anaerobe Desulfovibrio vulgaris Miyazaki F. . Anaerobe 3:, 339–346. [CrossRef] [PubMed]
    [Google Scholar]
  39. Pereira P. M. , Teixeira M. , Xavier A. V. , Louro R. O. , Pereira I. A. . ( 2006; ). The Tmc complex from Desulfovibrio vulgaris Hildenborough is involved in transmembrane electron transfer from periplasmic hydrogen oxidation. . Biochemistry 45:, 10359–10367. [CrossRef] [PubMed]
    [Google Scholar]
  40. Pfaffl M. W. , Horgan G. W. , Dempfle L. . ( 2002; ). Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. . Nucleic Acids Res 30:, e36. [CrossRef]
    [Google Scholar]
  41. Pitcher R. S. , Brittain T. , Watmough N. J. . ( 2002; ). Cytochrome cbb 3 oxidase and bacterial microaerobic metabolism. . Biochem Soc Trans 30:, 653–658. [CrossRef] [PubMed]
    [Google Scholar]
  42. Postgate J. . ( 1984; ). The Sulphate-Reducing Bacteria, , 2nd edn.. Cambridge, UK:: Cambridge University Press;.
    [Google Scholar]
  43. Ravenschlag K. , Sahm K. , Knoblauch C. , Jørgensen B. B. , Amann R. . ( 2000; ). Community structure, cellular rRNA content, and activity of sulfate-reducing bacteria in marine arctic sediments. . Appl Environ Microbiol 66:, 3592–3602. [CrossRef] [PubMed]
    [Google Scholar]
  44. Santana M. . ( 2008; ). Presence and expression of terminal oxygen reductases in strictly anaerobic sulfate-reducing bacteria isolated from salt-marsh sediments. . Anaerobe 14:, 145–156. [CrossRef] [PubMed]
    [Google Scholar]
  45. Santos H. , Fareleira P. , Xavier A. V. , Chen L. , Liu M. Y. , LeGall J. . ( 1993; ). Aerobic metabolism of carbon reserves by the “obligate anaerobe” Desulfovibrio gigas . . Biochem Biophys Res Commun 195:, 551–557. [CrossRef] [PubMed]
    [Google Scholar]
  46. Sass H. , Berchtold M. , Branke J. , König H. , Cypionka H. , Babenzien H. D. . ( 1998a; ). Psychrotolerant sulfate-reducing bacteria from an oxic freshwater sediment, description of Desulfovibrio cuneatus sp. nov. and Desulfovibrio litoralis sp. nov. . Syst Appl Microbiol 21:, 212–219.[PubMed] [CrossRef]
    [Google Scholar]
  47. Sass H. , Wieringa E. , Cypionka H. , Babenzien H. D. , Overmann J. . ( 1998b; ). High genetic and physiological diversity of sulfate-reducing bacteria isolated from an oligotrophic lake sediment. . Arch Microbiol 170:, 243–251. [CrossRef] [PubMed]
    [Google Scholar]
  48. Sass A. M. , Eschemann A. , Kühl M. , Thar R. , Sass H. , Cypionka H. . ( 2002; ). Growth and chemosensory behavior of sulfate-reducing bacteria in oxygen-sulfide gradients. . FEMS Microbiol Ecol 40:, 47–54.[PubMed]
    [Google Scholar]
  49. Sigalevich P. , Cohen Y. . ( 2000; ). Oxygen-dependent growth of the sulfate-reducing bacterium Desulfovibrio oxyclinae in coculture with Marinobacter sp. strain MB in an aerated sulfate-depleted chemostat. . Appl Environ Microbiol 66:, 5019–5023. [CrossRef] [PubMed]
    [Google Scholar]
  50. Teske A. , Ramsing N. B. , Habicht K. , Fukui M. , Küver J. , Jørgensen B. B. , Cohen Y. . ( 1998; ). Sulfate-reducing bacteria and their activities in cyanobacterial mats of Solar Lake (Sinai, Egypt). . Appl Environ Microbiol 64:, 2943–2951.[PubMed]
    [Google Scholar]
  51. Thauer R. K. , Stackebrandt E. , Hamilton W. A. . ( 2007; ). Energy Metabolism and Phylogenetic Diversity of Sulphate-Reducing Bacteria, , 1st edn.. Cambridge:: Cambridge University Press;.
    [Google Scholar]
  52. Venceslau S. S. , Lino R. R. , Pereira I. A. . ( 2010; ). The Qrc membrane complex, related to the alternative complex III, is a menaquinone reductase involved in sulfate respiration. . J Biol Chem 285:, 22774–22783. [CrossRef] [PubMed]
    [Google Scholar]
  53. Vincent K. A. , Parkin A. , Lenz O. , Albracht S. P. , Fontecilla-Camps J. C. , Cammack R. , Friedrich B. , Armstrong F. A. . ( 2005; ). Electrochemical definitions of O2 sensitivity and oxidative inactivation in hydrogenases. . J Am Chem Soc 127:, 18179–18189. [CrossRef] [PubMed]
    [Google Scholar]
  54. Voordouw G. , Strang J. D. , Wilson F. R. . ( 1989; ). Organization of the genes encoding [Fe] hydrogenase in Desulfovibrio vulgaris subsp. oxamicus Monticello. . J Bacteriol 171:, 3881–3889.[PubMed]
    [Google Scholar]
  55. Weber M. M. , Matschiner J. T. , Peck H. D. . ( 1970; ). Menaquinone-6 in the strict anaerobes Desulfovibrio vulgaris and Desulfovibrio gigas . . Biochem Biophys Res Commun 38:, 197–204. [CrossRef] [PubMed]
    [Google Scholar]
  56. Wildschut J. D. , Lang R. M. , Voordouw J. K. , Voordouw G. . ( 2006; ). Rubredoxin : oxygen oxidoreductase enhances survival of Desulfovibrio vulgaris Hildenborough under microaerophilic conditions. . J Bacteriol 188:, 6253–6260. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.049171-0
Loading
/content/journal/micro/10.1099/mic.0.049171-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error