1887

Abstract

, a Gram-negative anaerobe implicated in periodontitis, has been detected within human buccal epithelial cells and shown to invade oral epithelial cells . We have previously shown that this bacterium triggers host tyrosine kinase-dependent phosphorylation and actin-dependent cytoskeleton reorganization for invasion. On the bacterial side, the leucine-rich repeat cell-surface BspA protein is important for entry. The present study was undertaken to identify host signalling molecules during entry into human oral and cervical epithelial cells. Specifically, the roles of phosphatidylinositol 3-kinase (PI3K), Rho-family GTPases, cholesterol-rich membrane microdomains and the endocytic protein clathrin were investigated. For this purpose, cell lines were pretreated with chemical inhibitors or small interfering RNAs (siRNAs) that target PI3Ks, Rho GTPases, clathrin and cholesterol (a critical component of ‘lipid rafts’), and the resulting effects on uptake were determined. Our studies revealed that entry is dependent on host PI3K signalling, and that purified BspA protein causes activation of this lipid kinase. Bacterial entry also requires the cooperation of host Rac1 GTPase. Finally, our findings indicate an important role for clathrin and cholesterol-rich lipid microdomains in the internalization process

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.048975-0
2011-08-01
2020-01-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/8/2382.html?itemId=/content/journal/micro/10.1099/mic.0.048975-0&mimeType=html&fmt=ahah

References

  1. Akiyama T., Ishida J., Nakagawa S., Ogawara H., Watanabe S., Itoh N., Shibuya M., Fukami Y.. ( 1987;). Genistein, a specific inhibitor of tyrosine-specific protein kinases. J Biol Chem262:5592–5595[PubMed]
    [Google Scholar]
  2. Arcaro A., Wymann M. P.. ( 1993;). Wortmannin is a potent phosphatidylinositol 3-kinase inhibitor: the role of phosphatidylinositol 3,4,5-trisphosphate in neutrophil responses. Biochem J296:297–301[PubMed]
    [Google Scholar]
  3. Brown D. A., London E.. ( 2000;). Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J Biol Chem275:17221–17224 [CrossRef][PubMed]
    [Google Scholar]
  4. Colombo A. V., da Silva C. M., Haffajee A., Colombo A. P.. ( 2007;). Identification of intracellular oral species within human crevicular epithelial cells from subjects with chronic periodontitis by fluorescence in situ hybridization. J Periodontal Res42:236–243 [CrossRef][PubMed]
    [Google Scholar]
  5. Cossart P., Sansonetti P. J.. ( 2004;). Bacterial invasion: the paradigms of enteroinvasive pathogens. Science304:242–248 [CrossRef][PubMed]
    [Google Scholar]
  6. Dokainish H., Gavicherla B., Shen Y., Ireton K.. ( 2007;). The carboxyl-terminal SH3 domain of the mammalian adaptor CrkII promotes internalization of Listeria monocytogenes through activation of host phosphoinositide 3-kinase. Cell Microbiol9:2497–2516 [CrossRef][PubMed]
    [Google Scholar]
  7. Duncan M. J., Shin J. S., Abraham S. N.. ( 2002;). Microbial entry through caveolae: variations on a theme. Cell Microbiol4:783–791 [CrossRef][PubMed]
    [Google Scholar]
  8. Ehrlich M., Boll W., Van Oijen A., Hariharan R., Chandran K., Nibert M. L., Kirchhausen T.. ( 2004;). Endocytosis by random initiation and stabilization of clathrin-coated pits. Cell118:591–605 [CrossRef][PubMed]
    [Google Scholar]
  9. Engelman J. A., Luo J., Cantley L. C.. ( 2006;). The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet7:606–619 [CrossRef][PubMed]
    [Google Scholar]
  10. Furuta N., Tsuda K., Omori H., Yoshimori T., Yoshimura F., Amano A.. ( 2009;). Porphyromonas gingivalis outer membrane vesicles enter human epithelial cells via an endocytic pathway and are sorted to lysosomal compartments. Infect Immun77:4187–4196 [CrossRef][PubMed]
    [Google Scholar]
  11. Golub T., Wacha S., Caroni P.. ( 2004;). Spatial and temporal control of signaling through lipid rafts. Curr Opin Neurobiol14:542–550 [CrossRef][PubMed]
    [Google Scholar]
  12. Goluszko P., Nowicki B.. ( 2005;). Membrane cholesterol: a crucial molecule affecting interactions of microbial pathogens with mammalian cells. Infect Immun73:7791–7796 [CrossRef][PubMed]
    [Google Scholar]
  13. Han Y. W., Shi W., Huang G. T., Kinder Haake S., Park N. H., Kuramitsu H., Genco R. J.. ( 2000;). Interactions between periodontal bacteria and human oral epithelial cells: Fusobacterium nucleatum adheres to and invades epithelial cells. Infect Immun68:3140–3146 [CrossRef][PubMed]
    [Google Scholar]
  14. Hasebe A., Yoshimura A., Into T., Kataoka H., Tanaka S., Arakawa S., Ishikura H., Golenbock D. T., Sugaya T. et al. ( 2004;). Biological activities of Bacteroides forsythus lipoproteins and their possible pathological roles in periodontal disease. Infect Immun72:1318–1325 [CrossRef][PubMed]
    [Google Scholar]
  15. Honma K., Kuramitsu H. K., Genco R. J., Sharma A.. ( 2001;). Development of a gene inactivation system for Bacteroides forsythus: construction and characterization of a BspA mutant. Infect Immun69:4686–4690 [CrossRef][PubMed]
    [Google Scholar]
  16. Honma K., Mishima E., Sharma A.. ( 2011;). Role of Tannerella forsythia NanH sialidase in epithelial cell attachment. Infect Immun79:393–401 [CrossRef][PubMed]
    [Google Scholar]
  17. Inagaki S., Onishi S., Kuramitsu H. K., Sharma A.. ( 2006;). Porphyromonas gingivalis vesicles enhance attachment, and the leucine-rich repeat BspA protein is required for invasion of epithelial cells by “Tannerella forsythia”. Infect Immun74:5023–5028 [CrossRef][PubMed]
    [Google Scholar]
  18. Ireton K.. ( 2007;). Entry of the bacterial pathogen Listeria monocytogenes into mammalian cells. Cell Microbiol9:1365–1375 [CrossRef][PubMed]
    [Google Scholar]
  19. Ireton K., Payrastre B., Chap H., Ogawa W., Sakaue H., Kasuga M., Cossart P.. ( 1996;). A role for phosphoinositide 3-kinase in bacterial invasion. Science274:780–782 [CrossRef][PubMed]
    [Google Scholar]
  20. Iyer D., Anaya-Bergman C., Jones K., Yanamandra S., Sengupta D., Miyazaki H., Lewis J. P.. ( 2010;). AdpC is a Prevotella intermedia 17 leucine-rich repeat internalin-like protein. Infect Immun78:2385–2396 [CrossRef][PubMed]
    [Google Scholar]
  21. Kannan S., Audet A., Huang H., Chen L. J., Wu M.. ( 2008;). Cholesterol-rich membrane rafts and Lyn are involved in phagocytosis during Pseudomonas aeruginosa infection. J Immunol180:2396–2408[PubMed][CrossRef]
    [Google Scholar]
  22. Kierbel A., Gassama-Diagne A., Mostov K., Engel J. N.. ( 2005;). The phosphoinositol-3-kinase–protein kinase B/Akt pathway is critical for Pseudomonas aeruginosa strain PAK internalization. Mol Biol Cell16:2577–2585 [CrossRef][PubMed]
    [Google Scholar]
  23. Kikkert R., Laine M. L., Aarden L. A., van Winkelhoff A. J.. ( 2007;). Activation of Toll-like receptors 2 and 4 by Gram-negative periodontal bacteria. Oral Microbiol Immunol22:145–151 [CrossRef][PubMed]
    [Google Scholar]
  24. Kirschbaum M., Schultze-Mosgau S., Pfister W., Eick S.. ( 2010;). Mixture of periodontopathogenic bacteria influences interaction with KB cells. Anaerobe16:461–468 [CrossRef][PubMed]
    [Google Scholar]
  25. Lafont F., Abrami L., van der Goot F. G.. ( 2004;). Bacterial subversion of lipid rafts. Curr Opin Microbiol7:4–10 [CrossRef][PubMed]
    [Google Scholar]
  26. Mañes S., del Real G., Martínez-A C.. ( 2003;). Pathogens: raft hijackers. Nat Rev Immunol3:557–568 [CrossRef][PubMed]
    [Google Scholar]
  27. Mangmool S., Haga T., Kobayashi H., Kim K. M., Nakata H., Nishida M., Kurose H.. ( 2006;). Clathrin required for phosphorylation and internalization of β2-adrenergic receptor by G protein-coupled receptor kinase 2 (GRK2). J Biol Chem281:31940–31949 [CrossRef][PubMed]
    [Google Scholar]
  28. Mostowy S., Danckaert A., Tham T. N., Machu C., Guadagnini S., Pizarro-Cerdá J., Cossart P.. ( 2009;). Septin 11 restricts InlB-mediated invasion by Listeria . J Biol Chem284:11613–11621 [CrossRef][PubMed]
    [Google Scholar]
  29. Onishi S., Honma K., Liang S., Stathopoulou P., Kinane D., Hajishengallis G., Sharma A.. ( 2008;). Toll-like receptor 2-mediated interleukin-8 expression in gingival epithelial cells by the Tannerella forsythia leucine-rich repeat protein BspA. Infect Immun76:198–205 [CrossRef][PubMed]
    [Google Scholar]
  30. Parton R. G., Simons K.. ( 2007;). The multiple faces of caveolae. Nat Rev Mol Cell Biol8:185–194 [CrossRef][PubMed]
    [Google Scholar]
  31. Ridley A. J.. ( 2006;). Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking. Trends Cell Biol16:522–529 [CrossRef][PubMed]
    [Google Scholar]
  32. Riethmüller J., Riehle A., Grassmé H., Gulbins E.. ( 2006;). Membrane rafts in host–pathogen interactions. Biochim Biophys Acta1758:2139–2147 [CrossRef][PubMed]
    [Google Scholar]
  33. Rodal S. K., Skretting G., Garred O., Vilhardt F., van Deurs B., Sandvig K.. ( 1999;). Extraction of cholesterol with methyl-beta-cyclodextrin perturbs formation of clathrin-coated endocytic vesicles. Mol Biol Cell10:961–974[PubMed][CrossRef]
    [Google Scholar]
  34. Rothberg K. G., Heuser J. E., Donzell W. C., Ying Y. S., Glenney J. R., Anderson R. G.. ( 1992;). Caveolin, a protein component of caveolae membrane coats. Cell68:673–682 [CrossRef][PubMed]
    [Google Scholar]
  35. Rudney J. D., Chen R., Sedgewick G. J.. ( 2005;). Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis, and Tannerella forsythensis are components of a polymicrobial intracellular flora within human buccal cells. J Dent Res84:59–63 [CrossRef][PubMed]
    [Google Scholar]
  36. Sabet M., Lee S. W., Nauman R. K., Sims T., Um H. S.. ( 2003;). The surface (S-) layer is a virulence factor of Bacteroides forsythus . Microbiology149:3617–3627 [CrossRef][PubMed]
    [Google Scholar]
  37. Schlegel R., Dickson R. B., Willingham M. C., Pastan I. H.. ( 1982;). Amantadine and dansylcadaverine inhibit vesicular stomatitis virus uptake and receptor-mediated endocytosis of alpha 2-macroglobulin. Proc Natl Acad Sci U S A79:2291–2295 [CrossRef][PubMed]
    [Google Scholar]
  38. Schulte R., Zumbihl R., Kampik D., Fauconnier A., Autenrieth I. B.. ( 1998;). Wortmannin blocks Yersinia invasin-triggered internalization, but not interleukin-8 production by epithelial cells. Med Microbiol Immunol (Berl)187:53–60 [CrossRef][PubMed]
    [Google Scholar]
  39. Seveau S., Bierne H., Giroux S., Prévost M. C., Cossart P.. ( 2004;). Role of lipid rafts in E-cadherin– and HGF-R/Met–mediated entry of Listeria monocytogenes into host cells. J Cell Biol166:743–753 [CrossRef][PubMed]
    [Google Scholar]
  40. Seveau S., Tham T. N., Payrastre B., Hoppe A. D., Swanson J. A., Cossart P.. ( 2007;). A FRET analysis to unravel the role of cholesterol in Rac1 and PI 3-kinase activation in the InlB/Met signalling pathway. Cell Microbiol9:790–803 [CrossRef][PubMed]
    [Google Scholar]
  41. Sharma A.. ( 2010;). Virulence mechanisms of Tannerella forsythia . Periodontol 200054:106–116 [CrossRef][PubMed]
    [Google Scholar]
  42. Shutes A., Onesto C., Picard V., Leblond B., Schweighoffer F., Der C. J.. ( 2007;). Specificity and mechanism of action of EHT 1864, a novel small molecule inhibitor of Rac family small GTPases. J Biol Chem282:35666–35678 [CrossRef][PubMed]
    [Google Scholar]
  43. Subtil A., Gaidarov I., Kobylarz K., Lampson M. A., Keen J. H., McGraw T. E.. ( 1999;). Acute cholesterol depletion inhibits clathrin-coated pit budding. Proc Natl Acad Sci U S A96:6775–6780 [CrossRef][PubMed]
    [Google Scholar]
  44. Tamai R., Asai Y., Ogawa T.. ( 2005;). Requirement for intercellular adhesion molecule 1 and caveolae in invasion of human oral epithelial cells by Porphyromonas gingivalis . Infect Immun73:6290–6298 [CrossRef][PubMed]
    [Google Scholar]
  45. Tanner A. C., Izard J.. ( 2006;). Tannerella forsythia, a periodontal pathogen entering the genomic era. Periodontol 200042:88–113 [CrossRef][PubMed]
    [Google Scholar]
  46. van der Goot F. G., Harder T.. ( 2001;). Raft membrane domains: from a liquid-ordered membrane phase to a site of pathogen attack. Semin Immunol13:89–97 [CrossRef][PubMed]
    [Google Scholar]
  47. Vanhaesebroeck B., Guillermet-Guibert J., Graupera M., Bilanges B.. ( 2010;). The emerging mechanisms of isoform-specific PI3K signalling. Nat Rev Mol Cell Biol11:329–341 [CrossRef][PubMed]
    [Google Scholar]
  48. Veiga E., Cossart P.. ( 2006;). The role of clathrin-dependent endocytosis in bacterial internalization. Trends Cell Biol16:499–504 [CrossRef][PubMed]
    [Google Scholar]
  49. Veiga E., Guttman J. A., Bonazzi M., Boucrot E., Toledo-Arana A., Lin A. E., Enninga J., Pizarro-Cerdá J., Finlay B. B. et al. ( 2007;). Invasive and adherent bacterial pathogens co-opt host clathrin for infection. Cell Host Microbe2:340–351 [CrossRef][PubMed]
    [Google Scholar]
  50. Vlahos C. J., Matter W. F., Hui K. Y., Brown R. F.. ( 1994;). A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). J Biol Chem269:5241–5248[PubMed]
    [Google Scholar]
  51. Wang L. H., Rothberg K. G., Anderson R. G.. ( 1993;). Mis-assembly of clathrin lattices on endosomes reveals a regulatory switch for coated pit formation. J Cell Biol123:1107–1117 [CrossRef][PubMed]
    [Google Scholar]
  52. Zaas D. W., Duncan M., Rae Wright J., Abraham S. N.. ( 2005;). The role of lipid rafts in the pathogenesis of bacterial infections. Biochim Biophys Acta1746:305–313 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.048975-0
Loading
/content/journal/micro/10.1099/mic.0.048975-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error