1887

Abstract

The present study investigated the phylogenetic affiliation and physiological characteristics of bacteria responsible for anaerobic ammonium oxidization (anammox); these bacteria were enriched in an anammox reactor with a nitrogen removal rate of 26.0 kg N m day. The anammox bacteria were identified as representing ‘ Brocadia sinica’ on the basis of phylogenetic analysis of rRNA operon sequences. Physiological characteristics examined were growth rate, kinetics of ammonium oxidation and nitrite reduction, temperature, pH and inhibition of anammox. The maximum specific growth rate (μ) was 0.0041 h, corresponding to a doubling time of 7 days. The half-saturation constants ( ) for ammonium and nitrite of ‘ B. sinica’ were 28±4 and 86±4 µM, respectively, higher than those of ‘ Brocadia anammoxidans’ and ‘ Kuenenia stuttgartiensis’. The temperature and pH ranges of anammox activity were 25–45 °C and pH 6.5–8.8, respectively. Anammox activity was inhibited in the presence of nitrite (50 % inhibition at 16 mM), ethanol (91 % at 1 mM) and methanol (86 % at 1 mM). Anammox activities were 80 and 70 % of baseline in the presence of 20 mM phosphorus and 3 % salinity, respectively. The yield of biomass and dissolved organic carbon production in the culture supernatant were 0.062 and 0.005 mol C (mol ), respectively. This study compared physiological differences between three anammox bacterial enrichment cultures to provide a better understanding of anammox niche specificity in natural and man-made ecosystems.

Funding
This study was supported by the:
  • New Energy and Industrial Technology Development Organization
  • Japan Science and Technology Agency, CREST
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.048595-0
2011-06-01
2021-08-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/6/1706.html?itemId=/content/journal/micro/10.1099/mic.0.048595-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. ( 1997). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [View Article][PubMed]
    [Google Scholar]
  2. Amano T., Yoshinaga I., Okada K., Yamagishi T., Ueda S., Obuchi A., Sako Y., Suwa Y. ( 2007). Detection of anammox activity and diversity of anammox bacteria-related 16S rRNA genes in coastal marine sediment in Japan. Microbes Environ 22:232–242 [View Article]
    [Google Scholar]
  3. Cho S., Takahashi Y., Fujii N., Yamada Y., Satoh H., Okabe S. ( 2010). Nitrogen removal performance and microbial community analysis of an anaerobic up-flow granular bed anammox reactor. Chemosphere 78:1129–1135 [View Article][PubMed]
    [Google Scholar]
  4. Dapena-Mora A., Fernandez I., Campos J. L., Mosquera-Corral A., Mendez R., Jetten M. S. M. ( 2007). Evaluation of activity and inhibition effects on Anammox process by batch tests based on the nitrogen gas production. Enzyme Microb Technol 40:859–865 [View Article]
    [Google Scholar]
  5. Eaton A. D., Clesceri L. S., Rice E. W., Greenberg A. E. (editors) ( 2005). Standard Methods for the Examination of Water and Wastewater, 21st edn. Washington, DC: American Public Health Association, American Water Works Association & Water Environment Federation;
    [Google Scholar]
  6. Egli K., Fanger U., Alvarez P. J. J., Siegrist H., van der Meer J. R., Zehnder A. J. B. ( 2001). Enrichment and characterization of an anammox bacterium from a rotating biological contactor treating ammonium-rich leachate. Arch Microbiol 175:198–207 [View Article][PubMed]
    [Google Scholar]
  7. Frear D. S., Burrell R. C. ( 1955). Spectrophotometric method for determining hydroxylamine reductase activity in higher plants. Anal Chem 27:1664–1665 [View Article]
    [Google Scholar]
  8. Güven D., Dapena A., Kartal B., Schmid M. C., Maas B., van de Pas-Schoonen K., Sozen S., Mendez R., Op den Camp H. J. M. et al. ( 2005). Propionate oxidation by and methanol inhibition of anaerobic ammonium-oxidizing bacteria. Appl Environ Microbiol 71:1066–1071 [View Article][PubMed]
    [Google Scholar]
  9. Hu B. L., Zheng P., Tang C. J., Chen J. W., van der Biezen E., Zhang L., Ni B. J., Jetten M. S. M., Yan J., Yu H.-Q. ( 2010). Identification and quantification of anammox bacteria in eight nitrogen removal reactors. Water Res 44:5014–5020 [View Article][PubMed]
    [Google Scholar]
  10. Jetten M. S. M., Horn S. J., van Loosdrecht M. C. M. ( 1997). Towards a more sustainable municipal wastewater treatment system. Water Sci Technol 35:171–180 [View Article]
    [Google Scholar]
  11. Jetten M. S. M., Cirpus I., Kartal B., van Niftrik L., van de Pas-Schoonen K. T., Sliekers O., Haaijer S., van der Star W., Schmid M. et al. ( 2005). 1994–2004: 10 years of research on the anaerobic oxidation of ammonium. Biochem Soc Trans 33:119–123 [View Article][PubMed]
    [Google Scholar]
  12. Kartal B., Rattray J., van Niftrik L. A., van de Vossenberg J., Schmid M. C., Webb R. I., Schouten S., Fuerst J. A., Damsté J. S., Jetten M. S. M. ( 2007). Candidatus “Anammoxoglobus propionicus” a new propionate oxidizing species of anaerobic ammonium oxidizing bacteria. Syst Appl Microbiol 30:39–49 [View Article][PubMed]
    [Google Scholar]
  13. Kindaichi T., Tsushima I., Ogasawara Y., Shimokawa M., Ozaki N., Satoh H., Okabe S. ( 2007). In situ activity and spatial organization of anaerobic ammonium-oxidizing (anammox) bacteria in biofilms. Appl Environ Microbiol 73:4931–4939 [View Article][PubMed]
    [Google Scholar]
  14. Krieg N. R., Staley J. T., Brown D. R., Hedlund B. P., Paster B. J., Ward N. L., Ludwig W., Whitman W. B. ( 2010). Bergey’s Manual of Systematic Bacteriology: The Bacteroidetes, Spirochaetes, Tenericutes (Mollicutes), Acidobacteria, Fibrobacteres, Fusobacteria, Dictyoglomi, Gemmatimonadetes, Lentisphaerae, Verrucomicrobia, Chlamydiae, and Planctomycetes, 2nd edn. vol. 4 New York: Springer;
    [Google Scholar]
  15. Kuypers M. M. M., Sliekers A. O., Lavik G., Schmid M., Jørgensen B. B., Kuenen J. G., Sinninghe Damsté J. S., Strous M., Jetten M. S. M. ( 2003). Anaerobic ammonium oxidation by anammox bacteria in the Black Sea. Nature 422:608–611 [View Article][PubMed]
    [Google Scholar]
  16. Lodish H., Berk A., Zipursky S. L., Matsudaira P., Baltimore D., Darnell J. E. ( 2000). Activation energy and reaction rate. 2.4. Biochemical energetics. Molecular Cell Biology45–47 Tenney S. New York: W. H. Freeman;
    [Google Scholar]
  17. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S. et al. ( 2004). ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371 [View Article][PubMed]
    [Google Scholar]
  18. Miura Y., Okabe S. ( 2008). Quantification of cell specific uptake activity of microbial products by uncultured Chloroflexi by microautoradiography combined with fluorescence in situ hybridization. Environ Sci Technol 42:7380–7386 [View Article][PubMed]
    [Google Scholar]
  19. Mulder A., van de Graaf A. A., Robertson L. A., Kuenen J. G. ( 1995). Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiol Ecol 16:177–184 [View Article]
    [Google Scholar]
  20. Okabe S., Kindaichi T., Ito T. ( 2005). Fate of 14C-labeled microbial products derived from nitrifying bacteria in autotrophic nitrifying biofilms. Appl Environ Microbiol 71:3987–3994 [View Article][PubMed]
    [Google Scholar]
  21. Park H., Rosenthal A., Jezek R., Ramalingam K., Fillos J., Chandran K. ( 2010). Impact of inocula and growth mode on the molecular microbial ecology of anaerobic ammonia oxidation (anammox) bioreactor communities. Water Res 44:5005–5013 [View Article][PubMed]
    [Google Scholar]
  22. Prosser J. I. ( 1989). Autotrophic nitrification in bacteria. Adv Microb Physiol 30:125–181 [View Article][PubMed]
    [Google Scholar]
  23. Quan Z. X., Rhee S. K., Zuo J. E., Yang Y., Bae J. W., Park J. R., Lee S. T., Park Y. H. ( 2008). Diversity of ammonium-oxidizing bacteria in a granular sludge anaerobic ammonium-oxidizing (anammox) reactor. Environ Microbiol 10:3130–3139 [View Article][PubMed]
    [Google Scholar]
  24. Schmid M., Schmitz-Esser S., Jetten M., Wagner M. ( 2001). 16S-23S rDNA intergenic spacer and 23S rDNA of anaerobic ammonium-oxidizing bacteria: implications for phylogeny and in situ detection. Environ Microbiol 3:450–459 [View Article][PubMed]
    [Google Scholar]
  25. Schmidt I., Sliekers O., Schmid M., Bock E., Fuerst J., Kuenen J. G., Jetten M. S., Strous M. ( 2003). New concepts of microbial treatment processes for the nitrogen removal in wastewater. FEMS Microbiol Rev 27:481–492 [View Article][PubMed]
    [Google Scholar]
  26. Strous M., Heijnen J. J., Kuenen J. G., Jetten M. S. M. ( 1998). The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms. Appl Microbiol Biotechnol 50:589–596 [View Article]
    [Google Scholar]
  27. Strous M., Fuerst J. A., Kramer E. H., Logemann S., Muyzer G., van de Pas-Schoonen K. T., Webb R., Kuenen J. G., Jetten M. S. ( 1999a). Missing lithotroph identified as new planctomycete. Nature 400:446–449 [View Article][PubMed]
    [Google Scholar]
  28. Strous M., Kuenen J. G., Jetten M. S. M. ( 1999b). Key physiology of anaerobic ammonium oxidation. Appl Environ Microbiol 65:3248–3250[PubMed]
    [Google Scholar]
  29. Thamdrup B., Dalsgaard T. ( 2002). Production of N2 through anaerobic ammonium oxidation coupled to nitrate reduction in marine sediments. Appl Environ Microbiol 68:1312–1318 [View Article][PubMed]
    [Google Scholar]
  30. Tsushima I., Ogasawara Y., Shimokawa M., Kindaichi T., Okabe S. ( 2007a). Development of a super high-rate Anammox reactor and in situ analysis of biofilm structure and function. Water Sci Technol 55:9–17 [View Article][PubMed]
    [Google Scholar]
  31. Tsushima I., Ogasawara Y., Kindaichi T., Satoh H., Okabe S. ( 2007b). Development of high-rate anaerobic ammonium-oxidizing (anammox) biofilm reactors. Water Res 41:1623–1634 [View Article][PubMed]
    [Google Scholar]
  32. Tsushima I., Kindaichi T., Okabe S. ( 2007c). Quantification of anaerobic ammonium-oxidizing bacteria in enrichment cultures by real-time PCR. Water Res 41:785–794 [View Article][PubMed]
    [Google Scholar]
  33. van de Graaf A. A., de Bruijn P., Robertson L. A., Jetten M. M., Kuenen J. G. ( 1996). Autotrophic growth of anaerobic ammonium-oxidizing micro-organisms in a fluidized bed reactor. Microbiology 142:2187–2196 [View Article]
    [Google Scholar]
  34. van de Graaf A. A., de Bruijn P., Robertson L. A., Jetten M. M., Kuenen J. G. ( 1997). Metabolic pathway of anaerobic ammonium oxidation on the basis of 15N studies in a fluidized bed reactor. Microbiology 143:2415–2421 [View Article]
    [Google Scholar]
  35. van de Vossenberg J., Rattray J. E., Geerts W., Kartal B., van Niftrik L., van Donselaar E. G., Sinninghe Damsté J. S., Strous M., Jetten M. S. M. ( 2008). Enrichment and characterization of marine anammox bacteria associated with global nitrogen gas production. Environ Microbiol 10:3120–3129 [View Article][PubMed]
    [Google Scholar]
  36. van der Star W. R. L., Abma W. R., Blommers D., Mulder J. W., Tokutomi T., Strous M., Picioreanu C., van Loosdrecht M. C. M. ( 2007). Startup of reactors for anoxic ammonium oxidation: experiences from the first full-scale anammox reactor in Rotterdam. Water Res 41:4149–4163 [View Article][PubMed]
    [Google Scholar]
  37. van der Star W. R. L., van de Graaf M. J., Kartal B., Picioreanu C., Jetten M. S. M., van Loosdrecht M. C. M. ( 2008a). Response of anaerobic ammonium-oxidizing bacteria to hydroxylamine. Appl Environ Microbiol 74:4417–4426 [View Article][PubMed]
    [Google Scholar]
  38. van der Star W. R. L., Miclea A. I., van Dongen U. G. J. M., Muyzer G., Picioreanu C., van Loosdrecht M. C. M. ( 2008b). The membrane bioreactor: a novel tool to grow anammox bacteria as free cells. Biotechnol Bioeng 101:286–294 [View Article][PubMed]
    [Google Scholar]
  39. van Niftrik L., Geerts W. J. C., van Donselaar E. G., Humbel B. M., Yakushevska A., Verkleij A. J., Jetten M. S. M., Strous M. ( 2008). Combined structural and chemical analysis of the anammoxosome: a membrane-bounded intracytoplasmic compartment in anammox bacteria. J Struct Biol 161:401–410 [View Article][PubMed]
    [Google Scholar]
  40. Watt G. W., Chrisp J. D. ( 1952). A spectrophotometric method for the determination of hydrazine. Anal Chem 24:2006–2008 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.048595-0
Loading
/content/journal/micro/10.1099/mic.0.048595-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error