1887

Abstract

Bacterial flagellar motors exploit the electrochemical potential gradient of a coupling ion (H or Na) as their energy source, and are composed of stator and rotor proteins. Sodium-driven and proton-driven motors have the stator proteins PomA and PomB or MotA and MotB, respectively, which interact with each other in their transmembrane (TM) regions to form an ion channel. The single TM region of PomB or MotB, which forms the ion-conduction pathway together with TM3 and TM4 of PomA or MotA, respectively, has a highly conserved aspartate residue that is the ion binding site and is essential for rotation. To investigate the ion conductivity and selectivity of the Na-driven PomA/PomB stator complex, we replaced conserved residues predicted to be near the conserved aspartate with H-type residues, PomA-N194Y, PomB-F22Y and/or PomB-S27T. Motility analysis revealed that the ion specificity was not changed by either of the PomB mutations. PomB-F22Y required a higher concentration of Na to exhibit swimming, but this effect was suppressed by additional mutations, PomA-N194Y or PomB-S27T. Moreover, the motility of the PomB-F22Y mutant was resistant to phenamil, a specific inhibitor for the Na channel. When PomB-F22 was changed to other amino acids and the effects on swimming ability were investigated, replacement with a hydrophilic residue decreased the maximum swimming speed and conferred strong resistance to phenamil. From these results, we speculate that the Na flux is reduced by the PomB-F22Y mutation, and that PomB-F22 is important for the effective release of Na from PomB-D24.

Funding
This study was supported by the:
  • Ministry of Education, Science, and Culture of Japan
  • Japan Science and Technology Corporation
  • Soft Nano-Machine Project of the Japan Science and Technology Agency
  • Japan Society for the Promotion of Science
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.048488-0
2011-08-01
2021-07-30
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/8/2422.html?itemId=/content/journal/micro/10.1099/mic.0.048488-0&mimeType=html&fmt=ahah

References

  1. Asai Y., Kojima S., Kato H., Nishioka N., Kawagishi I., Homma M. ( 1997). Putative channel components for the fast-rotating sodium-driven flagellar motor of a marine bacterium. J Bacteriol 179:5104–5110[PubMed]
    [Google Scholar]
  2. Asai Y., Kawagishi I., Sockett R. E., Homma M. ( 2000). Coupling ion specificity of chimeras between H+- and Na+-driven motor proteins, MotB and PomB, in Vibrio polar flagella. EMBO J 19:3639–3648 [View Article][PubMed]
    [Google Scholar]
  3. Asai Y., Yakushi T., Kawagishi I., Homma M. ( 2003). Ion-coupling determinants of Na+-driven and H+-driven flagellar motors. J Mol Biol 327:453–463 [View Article][PubMed]
    [Google Scholar]
  4. Blair D. F., Berg H. C. ( 1990). The MotA protein of E. coli is a proton-conducting component of the flagellar motor. Cell 60:439–449 [View Article][PubMed]
    [Google Scholar]
  5. Braun T. F., Blair D. F. ( 2001). Targeted disulfide cross-linking of the MotB protein of Escherichia coli: evidence for two H+ channels in the stator complex. Biochemistry 40:13051–13059 [View Article][PubMed]
    [Google Scholar]
  6. Braun T. F., Al-Mawsawi L. Q., Kojima S., Blair D. F. ( 2004). Arrangement of core membrane segments in the MotA/MotB proton-channel complex of Escherichia coli . Biochemistry 43:35–45 [View Article][PubMed]
    [Google Scholar]
  7. Chun S. Y., Parkinson J. S. ( 1988). Bacterial motility: membrane topology of the Escherichia coli MotB protein. Science 239:276–278 [View Article][PubMed]
    [Google Scholar]
  8. Dean G. E., Macnab R. M., Stader J., Matsumura P., Burks C. ( 1984). Gene sequence and predicted amino acid sequence of the motA protein, a membrane-associated protein required for flagellar rotation in Escherichia coli . J Bacteriol 159:991–999[PubMed]
    [Google Scholar]
  9. Fukuoka H., Yakushi T., Kusumoto A., Homma M. ( 2005). Assembly of motor proteins, PomA and PomB, in the Na+-driven stator of the flagellar motor. J Mol Biol 351:707–717 [View Article][PubMed]
    [Google Scholar]
  10. Gouaux E., Mackinnon R. ( 2005). Principles of selective ion transport in channels and pumps. Science 310:1461–1465 [View Article][PubMed]
    [Google Scholar]
  11. Guzman L. M., Belin D., Carson M. J., Beckwith J. ( 1995). Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol 177:4121–4130[PubMed]
    [Google Scholar]
  12. Hunte C., Screpanti E., Venturi M., Rimon A., Padan E., Michel H. ( 2005). Structure of a Na+/H+ antiporter and insights into mechanism of action and regulation by pH. Nature 435:1197–1202 [View Article][PubMed]
    [Google Scholar]
  13. Ito M., Terahara N., Fujinami S., Krulwich T. A. ( 2005). Properties of motility in Bacillus subtilis powered by the H+-coupled MotAB flagellar stator, Na+-coupled MotPS or hybrid stators MotAS or MotPB. J Mol Biol 352:396–408 [View Article][PubMed]
    [Google Scholar]
  14. Jaques S., Kim Y. K., McCarter L. L. ( 1999). Mutations conferring resistance to phenamil and amiloride, inhibitors of sodium-driven motility of Vibrio parahaemolyticus . Proc Natl Acad Sci U S A 96:5740–5745 [View Article][PubMed]
    [Google Scholar]
  15. Kawagishi I., Okunishi I., Homma M., Imae Y. ( 1994). Removal of the periplasmic DNase before electroporation enhances efficiency of transformation in the marine bacterium Vibrio alginolyticus . Microbiology 140:2355–2361 [View Article]
    [Google Scholar]
  16. Kojima S., Blair D. F. ( 2001). Conformational change in the stator of the bacterial flagellar motor. Biochemistry 40:13041–13050 [View Article][PubMed]
    [Google Scholar]
  17. Kojima S., Blair D. F. ( 2004). Solubilization and purification of the MotA/MotB complex of Escherichia coli . Biochemistry 43:26–34 [View Article][PubMed]
    [Google Scholar]
  18. Kojima S., Asai Y., Atsumi T., Kawagishi I., Homma M. ( 1999). Na+-driven flagellar motor resistant to phenamil, an amiloride analog, caused by mutations in putative channel components. J Mol Biol 285:1537–1547 [View Article][PubMed]
    [Google Scholar]
  19. Kojima S., Shoji T., Asai Y., Kawagishi I., Homma M. ( 2000). A slow-motility phenotype caused by substitutions at residue Asp31 in the PomA channel component of a sodium-driven flagellar motor. J Bacteriol 182:3314–3318 [View Article][PubMed]
    [Google Scholar]
  20. Kojima S., Imada K., Sakuma M., Sudo Y., Kojima C., Minamino T., Homma M., Namba K. ( 2009). Stator assembly and activation mechanism of the flagellar motor by the periplasmic region of MotB. Mol Microbiol 73:710–718 [View Article][PubMed]
    [Google Scholar]
  21. Leake M. C., Chandler J. H., Wadhams G. H., Bai F., Berry R. M., Armitage J. P. ( 2006). Stoichiometry and turnover in single, functioning membrane protein complexes. Nature 443:355–358 [View Article][PubMed]
    [Google Scholar]
  22. Lloyd S. A., Blair D. F. ( 1997). Charged residues of the rotor protein FliG essential for torque generation in the flagellar motor of Escherichia coli . J Mol Biol 266:733–744 [View Article][PubMed]
    [Google Scholar]
  23. Murata T., Yamato I., Kakinuma Y., Leslie A. G., Walker J. E. ( 2005). Structure of the rotor of the V-type Na+-ATPase from Enterococcus hirae . Science 308:654–659 [View Article][PubMed]
    [Google Scholar]
  24. Murata T., Yamato I., Kakinuma Y., Shirouzu M., Walker J. E., Yokoyama S., Iwata S. ( 2008). Ion binding and selectivity of the rotor ring of the Na+-transporting V-ATPase. Proc Natl Acad Sci U S A 105:8607–8612 [View Article][PubMed]
    [Google Scholar]
  25. Okabe M., Yakushi T., Asai Y., Homma M. ( 2001). Cloning and characterization of motX, a Vibrio alginolyticus sodium-driven flagellar motor gene. J Biochem 130:879–884[PubMed] [CrossRef]
    [Google Scholar]
  26. Okunishi I., Kawagishi I., Homma M. ( 1996). Cloning and characterization of motY, a gene coding for a component of the sodium-driven flagellar motor in Vibrio alginolyticus . J Bacteriol 178:2409–2415[PubMed]
    [Google Scholar]
  27. Reid S. W., Leake M. C., Chandler J. H., Lo C. J., Armitage J. P., Berry R. M. ( 2006). The maximum number of torque-generating units in the flagellar motor of Escherichia coli is at least 11. Proc Natl Acad Sci U S A 103:8066–8071 [View Article][PubMed]
    [Google Scholar]
  28. Sato K., Homma M. ( 2000a). Functional reconstitution of the Na+-driven polar flagellar motor component of Vibrio alginolyticus . J Biol Chem 275:5718–5722 [View Article][PubMed]
    [Google Scholar]
  29. Sato K., Homma M. ( 2000b). Multimeric structure of PomA, a component of the Na+-driven polar flagellar motor of Vibrio alginolyticus . J Biol Chem 275:20223–20228 [View Article][PubMed]
    [Google Scholar]
  30. Stader J., Matsumura P., Vacante D., Dean G. E., Macnab R. M. ( 1986). Nucleotide sequence of the Escherichia coli motB gene and site-limited incorporation of its product into the cytoplasmic membrane. J Bacteriol 166:244–252[PubMed]
    [Google Scholar]
  31. Sudo Y., Kitade Y., Furutani Y., Kojima M., Kojima S., Homma M., Kandori H. ( 2009a). Interaction between Na+ ion and carboxylates of the PomA-PomB stator unit studied by ATR-FTIR spectroscopy. Biochemistry 48:11699–11705 [View Article][PubMed]
    [Google Scholar]
  32. Sudo Y., Terashima H., Abe-Yoshizumi R., Kojima S., Homma M. ( 2009b). Comparative study of the ion flux pathway in stator units of proton- and sodium-driven flagellar motors. Biophysics (J-STAGE) 5:45–52 [View Article]
    [Google Scholar]
  33. Tao X., Lee A., Limapichat W., Dougherty D. A., MacKinnon R. ( 2010). A gating charge transfer center in voltage sensors. Science 328:67–73 [View Article][PubMed]
    [Google Scholar]
  34. Terahara N., Krulwich T. A., Ito M. ( 2008). Mutations alter the sodium versus proton use of a Bacillus clausii flagellar motor and confer dual ion use on Bacillus subtilis motors. Proc Natl Acad Sci U S A 105:14359–14364 [View Article][PubMed]
    [Google Scholar]
  35. Terashima H., Kojima S., Homma M. ( 2008). Flagellar motility in bacteria structure and function of flagellar motor. Int Rev Cell Mol Biol 270:39–85 [View Article][PubMed]
    [Google Scholar]
  36. Terashima H., Kojima S., Homma M. ( 2010). Functional transfer of an essential aspartate for the ion-binding site in the stator proteins of the bacterial flagellar motor. J Mol Biol 397:689–696 [View Article][PubMed]
    [Google Scholar]
  37. Yakushi T., Maki S., Homma M. ( 2004). Interaction of PomB with the third transmembrane segment of PomA in the Na+-driven polar flagellum of Vibrio alginolyticus . J Bacteriol 186:5281–5291 [View Article][PubMed]
    [Google Scholar]
  38. Yamashita A., Singh S. K., Kawate T., Jin Y., Gouaux E. ( 2005). Crystal structure of a bacterial homologue of Na+/Cl-dependent neurotransmitter transporters. Nature 437:215–223 [View Article][PubMed]
    [Google Scholar]
  39. Yanisch-Perron C., Vieira J., Messing J. ( 1985). Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119 [View Article][PubMed]
    [Google Scholar]
  40. Yorimitsu T., Sato K., Asai Y., Kawagishi I., Homma M. ( 1999). Functional interaction between PomA and PomB, the Na+-driven flagellar motor components of Vibrio alginolyticus . J Bacteriol 181:5103–5106[PubMed]
    [Google Scholar]
  41. Yorimitsu T., Sowa Y., Ishijima A., Yakushi T., Homma M. ( 2002). The systematic substitutions around the conserved charged residues of the cytoplasmic loop of Na+-driven flagellar motor component PomA. J Mol Biol 320:403–413 [View Article][PubMed]
    [Google Scholar]
  42. Yorimitsu T., Kojima M., Yakushi T., Homma M. ( 2004). Multimeric structure of the PomA/PomB channel complex in the Na+-driven flagellar motor of Vibrio alginolyticus . J Biochem 135:43–51 [View Article][PubMed]
    [Google Scholar]
  43. Zhang X. Y., Goemaere E. L., Thomé R., Gavioli M., Cascales E., Lloubès R. ( 2009). Mapping the interactions between Escherichia coli Tol subunits: rotation of the TolR transmembrane helix. J Biol Chem 284:4275–4282 [View Article][PubMed]
    [Google Scholar]
  44. Zhou J., Blair D. F. ( 1997). Residues of the cytoplasmic domain of MotA essential for torque generation in the bacterial flagellar motor. J Mol Biol 273:428–439 [View Article][PubMed]
    [Google Scholar]
  45. Zhou J., Fazzio R. T., Blair D. F. ( 1995). Membrane topology of the MotA protein of Escherichia coli . J Mol Biol 251:237–242 [View Article][PubMed]
    [Google Scholar]
  46. Zhou J., Lloyd S. A., Blair D. F. ( 1998a). Electrostatic interactions between rotor and stator in the bacterial flagellar motor. Proc Natl Acad Sci U S A 95:6436–6441 [View Article][PubMed]
    [Google Scholar]
  47. Zhou J., Sharp L. L., Tang H. L., Lloyd S. A., Billings S., Braun T. F., Blair D. F. ( 1998b). Function of protonatable residues in the flagellar motor of Escherichia coli: a critical role for Asp 32 of MotB. J Bacteriol 180:2729–2735[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.048488-0
Loading
/content/journal/micro/10.1099/mic.0.048488-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error