1887

Abstract

Siderophores are high-affinity iron-chelating compounds produced by bacteria for iron uptake that can act as important virulence determinants for both plant and animal pathogens. Genome sequencing of the plant pathogen 87-22 revealed the presence of a putative pyochelin biosynthetic gene cluster (PBGC). Liquid chromatography (LC)-MS analyses of culture supernatants of mutants, in which expression of the cluster is upregulated and which lack a key biosynthetic gene from the cluster, indicated that pyochelin is a product of the PBGC. LC-MS comparisons with authentic standards on a homochiral stationary phase confirmed that pyochelin and not enantio-pyochelin (-pyochelin) is produced by . Transcription of the PBGC occurs via ~19 kb and ~3 kb operons and transcription of the ~19 kb operon is regulated by TetR- and AfsR-family proteins encoded by the cluster. This is the first report, to our knowledge, of pyochelin production by a Gram-positive bacterium; interestingly regulation of pyochelin production is distinct from characterized PBGCs in Gram-negative bacteria. Though pyochelin-mediated iron acquisition by is important for virulence, bioassays failed to demonstrate that pyochelin production by is required for development of disease symptoms on excised potato tuber tissue or radish seedlings.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.047977-0
2011-09-01
2020-08-07
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/9/2681.html?itemId=/content/journal/micro/10.1099/mic.0.047977-0&mimeType=html&fmt=ahah

References

  1. Ahn B.-E., Cha J., Lee E.-J., Han A.-R., Thompson C. J., Roe J.-H.. ( 2006;). Nur, a nickel-responsive regulator of the Fur family, regulates superoxide dismutases and nickel transport in Streptomyces coelicolor. . Mol Microbiol59:1848–1858 [CrossRef][PubMed]
    [Google Scholar]
  2. Ankenbauer R., Sriyosachati S., Cox C. D.. ( 1985;). Effects of siderophores on the growth of Pseudomonas aeruginosa in human serum and transferrin. Infect Immun49:132–140[PubMed]
    [Google Scholar]
  3. Barona-Gómez F., Wong U., Giannakopulos A. E., Derrick P. J., Challis G. L.. ( 2004;). Identification of a cluster of genes that directs desferrioxamine biosynthesis in Streptomyces coelicolor M145. J Am Chem Soc126:16282–16283 [CrossRef][PubMed]
    [Google Scholar]
  4. Barona-Gómez F., Lautru S., Francou F.-X., Leblond P., Pernodet J.-L., Challis G. L.. ( 2006;). Multiple biosynthetic and uptake systems mediate siderophore-dependent iron acquisition in Streptomyces coelicolor A3(2) and Streptomyces ambofaciens ATCC 23877. Microbiology152:3355–3366 [CrossRef][PubMed]
    [Google Scholar]
  5. Bentley S. D., Chater K. F., Cerdeño-Tárraga A.-M., Challis G. L., Thomson N. R., James K. D., Harris D. E., Quail M. A., Kieser H. et al. ( 2002;). Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature417:141–147 [CrossRef][PubMed]
    [Google Scholar]
  6. Bibb M. J., White J., Ward J. M., Janssen G. R.. ( 1994;). The mRNA for the 23S rRNA methylase encoded by the ermE gene of Saccharopolyspora erythraea is translated in the absence of a conventional ribosome-binding site. Mol Microbiol14:533–545 [CrossRef][PubMed]
    [Google Scholar]
  7. Bickel H., Bosshardt R., Gaumann E., Reusser P., Vischer E., Voser W., Wettstein A., Zahner H.. ( 1960;). Metabolic products of Actinomycetaceae . Helv Chim Acta43:2118–2128 [CrossRef]
    [Google Scholar]
  8. Bignell D. R. D., Tahlan K., Colvin K. R., Jensen S. E., Leskiw B. K.. ( 2005;). Expression of ccaR, encoding the positive activator of cephamycin C and clavulanic acid production in Streptomyces clavuligerus, is dependent on bldG. . Antimicrob Agents Chemother49:1529–1541 [CrossRef][PubMed]
    [Google Scholar]
  9. Bignell D. R. D., Huguet-Tapia J. C., Joshi M. V., Pettis G. S., Loria R.. ( 2010a;). What does it take to be a plant pathogen: genomic insights from Streptomyces species. Antonie van Leeuwenhoek98:179–194 [CrossRef][PubMed]
    [Google Scholar]
  10. Bignell D. R. D., Seipke R. F., Huguet-Tapia J. C., Chambers A. H., Parry R. J., Loria R.. ( 2010b;). Streptomyces scabies 87-22 contains a coronafacic acid-like biosynthetic cluster that contributes to plant-microbe interactions. Mol Plant Microbe Interact23:161–175 [CrossRef][PubMed]
    [Google Scholar]
  11. Castignetti D.. ( 1997;). Probing of Pseudomonas aeruginosa, Pseudomonas aureofaciens, Burkholderia (Pseudomonas) cepacia, Pseudomonas fluorescens, and Pseudomonas putida with the ferripyochelin receptor A gene and the synthesis of pyochelin in Pseudomonas aureofaciens, Pseudomonas fluorescens, and Pseudomonas putida. . Curr Microbiol34:250–257 [CrossRef][PubMed]
    [Google Scholar]
  12. Challis G. L., Ravel J., Townsend C. A.. ( 2000;). Predictive, structure-based model of amino acid recognition by nonribosomal peptide synthetase adenylation domains. Chem Biol7:211–224 [CrossRef][PubMed]
    [Google Scholar]
  13. Cox C. D.. ( 1982;). Effect of pyochelin on the virulence of Pseudomonas aeruginosa. . Infect Immun36:17–23[PubMed]
    [Google Scholar]
  14. Cox C. D., Rinehart K. L. Jr, Moore M. L., Cook J. C. Jr. ( 1981;). Pyochelin: novel structure of an iron-chelating growth promoter for Pseudomonas aeruginosa. . Proc Natl Acad Sci U S A78:4256–4260 [CrossRef][PubMed]
    [Google Scholar]
  15. Datsenko K. A., Wanner B. L.. ( 2000;). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A97:6640–6645 [CrossRef][PubMed]
    [Google Scholar]
  16. Dellagi A., Brisset M.-N., Paulin J.-P., Expert D.. ( 1998;). Dual role of desferrioxamine in Erwinia amylovora pathogenicity. Mol Plant Microbe Interact11:734–742 [CrossRef][PubMed]
    [Google Scholar]
  17. Enard C., Diolez A., Expert D.. ( 1988;). Systemic virulence of Erwinia chrysanthemi 3937 requires a functional iron assimilation system. J Bacteriol170:2419–2426[PubMed]
    [Google Scholar]
  18. Fiedler H.-P., Krastel P., Müller J., Gebhardt K., Zeeck A.. ( 2001;). Enterobactin: the characteristic catecholate siderophore of Enterobacteriaceae is produced by Streptomyces species.(1). FEMS Microbiol Lett196:147–151[PubMed][CrossRef]
    [Google Scholar]
  19. Flores F. J., Martín J. F.. ( 2004;). Iron-regulatory proteins DmdR1 and DmdR2 of Streptomyces coelicolor form two different DNA-protein complexes with iron boxes. Biochem J380:497–503 [CrossRef][PubMed]
    [Google Scholar]
  20. Flores F. J., Rincón J., Martín J. F.. ( 2003;). Characterization of the iron-regulated desA promoter of Streptomyces pilosus as a system for controlled gene expression in actinomycetes. Microb Cell Fact2:5 [CrossRef][PubMed]
    [Google Scholar]
  21. Flores F. J., Barreiro C., Coque J. J. R., Martín J. F.. ( 2005;). Functional analysis of two divalent metal-dependent regulatory genes dmdR1 and dmdR2 in Streptomyces coelicolor and proteome changes in deletion mutants. FEBS J272:725–735 [CrossRef][PubMed]
    [Google Scholar]
  22. Franza T., Michaud-Soret I., Piquerel P., Expert D.. ( 2002;). Coupling of iron assimilation and pectinolysis in Erwinia chrysanthemi 3937. Mol Plant Microbe Interact15:1181–1191 [CrossRef][PubMed]
    [Google Scholar]
  23. Gregory M. A., Till R., Smith M. C. M.. ( 2003;). Integration site for Streptomyces phage phiBT1 and development of site-specific integrating vectors. J Bacteriol185:5320–5323 [CrossRef][PubMed]
    [Google Scholar]
  24. Guerinot M. L.. ( 1994;). Microbial iron transport. Annu Rev Microbiol48:743–772 [CrossRef][PubMed]
    [Google Scholar]
  25. Gust B., Challis G. L., Fowler K., Kieser T., Chater K. F.. ( 2003a;). PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc Natl Acad Sci U S A100:1541–1546 [CrossRef][PubMed]
    [Google Scholar]
  26. Gust B., O'Rourke S., Bird N., Kieser T., Chater K. F.. ( 2003b;). Recombineering in Streptomyces coelicolor Norwich, UK: The John Innes Foundation;
    [Google Scholar]
  27. Hahn J.-S., Oh S.-Y., Roe J.-H.. ( 2000a;). Regulation of the furA and catC operon, encoding a ferric uptake regulator homologue and catalase-peroxidase, respectively, in Streptomyces coelicolor A3(2). J Bacteriol182:3767–3774 [CrossRef][PubMed]
    [Google Scholar]
  28. Hahn J.-S., Oh S.-Y., Chater K. F., Cho Y.-H., Roe J.-H.. ( 2000b;). H2O2-sensitive Fur-like repressor CatR regulating the major catalase gene in Streptomyces coelicolor. . J Biol Chem275:38254–38260 [CrossRef][PubMed]
    [Google Scholar]
  29. Hantke K.. ( 2001;). Iron and metal regulation in bacteria. Curr Opin Microbiol4:172–177 [CrossRef][PubMed]
    [Google Scholar]
  30. Harrison A. J., Yu M., Gårdenborg T., Middleditch M., Ramsay R. J., Baker E. N., Lott J. S.. ( 2006;). The structure of MbtI from Mycobacterium tuberculosis, the first enzyme in the biosynthesis of the siderophore mycobactin, reveals it to be a salicylate synthase. J Bacteriol188:6081–6091 [CrossRef][PubMed]
    [Google Scholar]
  31. Heinrichs D. E., Poole K.. ( 1993;). Cloning and sequence analysis of a gene (pchR) encoding an AraC family activator of pyochelin and ferripyochelin receptor synthesis in Pseudomonas aeruginosa. . J Bacteriol175:5882–5889[PubMed]
    [Google Scholar]
  32. Heinrichs D. E., Poole K.. ( 1996;). PchR, a regulator of ferripyochelin receptor gene (fptA) expression in Pseudomonas aeruginosa, functions both as an activator and as a repressor. J Bacteriol178:2586–2592[PubMed]
    [Google Scholar]
  33. Hong H.-J., Hutchings M. I., Hill L. M., Buttner M. J.. ( 2005;). The role of the novel Fem protein VanK in vancomycin resistance in Streptomyces coelicolor. . J Biol Chem280:13055–13061 [CrossRef][PubMed]
    [Google Scholar]
  34. Imbert M., Bechet M., Blondeau R.. ( 1995;). Comparison of the main siderophores produced by some species of Streptomyces. . Curr Microbiol31:129–133 [CrossRef]
    [Google Scholar]
  35. Ino A., Murabayashi A.. ( 2001;). Synthetic studies of thiazoline and thiazolidine-containing natural products. Part 3: Total synthesis and absolute configuration of the siderophore yersiniabactin. Tetrahedron57:1897–1902 [CrossRef]
    [Google Scholar]
  36. Joshi M. V., Bignell D. R. D., Johnson E. G., Sparks J. P., Gibson D. M., Loria R.. ( 2007;). The AraC/XylS regulator TxtR modulates thaxtomin biosynthesis and virulence in Streptomyces scabies. . Mol Microbiol66:633–642 [CrossRef][PubMed]
    [Google Scholar]
  37. Kadi N., Challis G. L.. ( 2009;). Chapter 17. Siderophore biosynthesis a substrate specificity assay for nonribosomal peptide synthetase-independent siderophore synthetases involving trapping of acyl-adenylate intermediates with hydroxylamine. Methods Enzymol458:431–457 [CrossRef][PubMed]
    [Google Scholar]
  38. Kerbarh O., Chirgadze D. Y., Blundell T. L., Abell C.. ( 2006;). Crystal structures of Yersinia enterocolitica salicylate synthase and its complex with the reaction products salicylate and pyruvate. J Mol Biol357:524–534 [CrossRef][PubMed]
    [Google Scholar]
  39. Kers J. A., Cameron K. D., Joshi M. V., Bukhalid R. A., Morello J. E., Wach M. J., Gibson D. M., Loria R.. ( 2005;). A large, mobile pathogenicity island confers plant pathogenicity on Streptomyces species. Mol Microbiol55:1025–1033 [CrossRef][PubMed]
    [Google Scholar]
  40. Kieser T., Bibb M., Butter M. J., Chater K. F., Hopwood D. A.. ( 2000;). Practical Streptomyces genetics Norwich, UK: The John Innes Foundation;
    [Google Scholar]
  41. Kim B. J., Park J. H., Park T. H., Bronstein P. A., Schneider D. J., Cartinhour S. W., Shuler M. L.. ( 2009;). Effect of iron concentration on the growth rate of Pseudomonas syringae and the expression of virulence factors in hrp-inducing minimal medium. Appl Environ Microbiol75:2720–2726 [CrossRef][PubMed]
    [Google Scholar]
  42. Lautru S., Deeth R. J., Bailey L. M., Challis G. L.. ( 2005;). Discovery of a new peptide natural product by Streptomyces coelicolor genome mining. Nat Chem Biol1:265–269 [CrossRef][PubMed]
    [Google Scholar]
  43. Leskiw B. K., Bibb M. J., Chater K. F.. ( 1991;). The use of a rare codon specifically during development?. Mol Microbiol5:2861–2867 [CrossRef][PubMed]
    [Google Scholar]
  44. Loria R., Bukhalid R. A., Creath R. A., Leiner R. H., Oliver M.. ( 1995;). Differential production of thaxtomins by pathogenic Streptomyces species in vitro. . Phytopathology85:537–541 [CrossRef]
    [Google Scholar]
  45. Loria R., Coombs J., Yoshida M., Kers J. A., Bukhalid R. A.. ( 2003;). A paucity of bacterial roots diseases: Streptomyces succeeds where others fail. Physiol Mol Plant Pathol62:65–72 [CrossRef]
    [Google Scholar]
  46. Loria R., Kers J., Joshi M.. ( 2006;). Evolution of plant pathogenicity in Streptomyces . Annu Rev Phytopathol44:469–487 [CrossRef][PubMed]
    [Google Scholar]
  47. Loria R., Bignell D. R. D., Moll S., Huguet-Tapia J. C., Joshi M. V., Johnson E. G., Seipke R. F., Gibson D. M.. ( 2008;). Thaxtomin biosynthesis: the path to plant pathogenicity in the genus Streptomyces. . Antonie van Leeuwenhoek94:3–10 [CrossRef][PubMed]
    [Google Scholar]
  48. MacNeil D. J., Gewain K. M., Ruby C. L., Dezeny G., Gibbons P. H., MacNeil T.. ( 1992;). Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilizing a novel integration vector. Gene111:61–68 [CrossRef][PubMed]
    [Google Scholar]
  49. Michel L., González N., Jagdeep S., Nguyen-Ngoc T., Reimmann C.. ( 2005;). PchR-box recognition by the AraC-type regulator PchR of Pseudomonas aeruginosa requires the siderophore pyochelin as an effector. Mol Microbiol58:495–509 [CrossRef][PubMed]
    [Google Scholar]
  50. Miethke M., Marahiel M. A.. ( 2007;). Siderophore-based iron acquisition and pathogen control. Microbiol Mol Biol Rev71:413–451 [CrossRef][PubMed]
    [Google Scholar]
  51. Ortiz de Orué Lucana D., Schrempf H.. ( 2000;). The DNA-binding characteristics of the Streptomyces reticuli regulator FurS depend on the redox state of its cysteine residues. Mol Gen Genet264:341–353 [CrossRef][PubMed]
    [Google Scholar]
  52. Patel H. M., Walsh C. T.. ( 2001;). In vitro reconstitution of the Pseudomonas aeruginosa nonribosomal peptide synthesis of pyochelin: characterization of backbone tailoring thiazoline reductase and N-methyltransferase activities. Biochemistry40:9023–9031 [CrossRef][PubMed]
    [Google Scholar]
  53. Patzer S. I., Braun V.. ( 2010;). Gene cluster involved in the biosynthesis of griseobactin, a catechol-peptide siderophore of Streptomyces sp. ATCC 700974. J Bacteriol192:426–435 [CrossRef][PubMed]
    [Google Scholar]
  54. Prince R. W., Cox C. D., Vasil M. L.. ( 1993;). Coordinate regulation of siderophore and exotoxin A production: molecular cloning and sequencing of the Pseudomonas aeruginosa fur gene. J Bacteriol175:2589–2598
    [Google Scholar]
  55. Quadri L. E. N., Sello J., Keating T. A., Weinreb P. H., Walsh C. T.. ( 1998;). Identification of a Mycobacterium tuberculosis gene cluster encoding the biosynthetic enzymes for assembly of the virulence-conferring siderophore mycobactin. Chem Biol5:631–645 [CrossRef][PubMed]
    [Google Scholar]
  56. Quadri L. E. N., Keating T. A., Patel H. M., Walsh C. T.. ( 1999;). Assembly of the Pseudomonas aeruginosa nonribosomal peptide siderophore pyochelin: In vitro reconstitution of aryl-4, 2-bisthiazoline synthetase activity from PchD, PchE, and PchF. Biochemistry38:14941–14954 [CrossRef][PubMed]
    [Google Scholar]
  57. Rausch C., Weber T., Kohlbacher O., Wohlleben W., Huson D. H.. ( 2005;). Specificity prediction of adenylation domains in nonribosomal peptide synthetases (NRPS) using transductive support vector machines (TSVMs). Nucleic Acids Res33:5799–5808 [CrossRef][PubMed]
    [Google Scholar]
  58. Reimmann C., Patel H. M., Serino L., Barone M., Walsh C. T., Haas D.. ( 2001;). Essential PchG-dependent reduction in pyochelin biosynthesis of Pseudomonas aeruginosa. . J Bacteriol183:813–820 [CrossRef][PubMed]
    [Google Scholar]
  59. Reimmann C., Patel H. M., Walsh C. T., Haas D.. ( 2004;). PchC thioesterase optimizes nonribosomal biosynthesis of the peptide siderophore pyochelin in Pseudomonas aeruginosa. . J Bacteriol186:6367–6373 [CrossRef][PubMed]
    [Google Scholar]
  60. Sambrook J., Fritsch E. F., Manniatis T.. ( 1989;). Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  61. Schlegel K., Taraz K., Budzikiewicz H.. ( 2004;). The stereoisomers of pyochelin, a siderophore of Pseudomonas aeruginosa. . Biometals17:409–414 [CrossRef][PubMed]
    [Google Scholar]
  62. Schupp T., Toupet C., Divers M.. ( 1988;). Cloning and expression of two genes of Streptomyces pilosus involved in the biosynthesis of the siderophore desferrioxamine B. Gene64:179–188 [CrossRef][PubMed]
    [Google Scholar]
  63. Seipke R. F., Loria R.. ( 2008;). Streptomyces scabies 87-22 possesses a functional tomatinase. J Bacteriol190:7684–7692 [CrossRef][PubMed]
    [Google Scholar]
  64. Serino L., Reimmann C., Baur H., Beyeler M., Visca P., Haas D.. ( 1995;). Structural genes for salicylate biosynthesis from chorismate in Pseudomonas aeruginosa. . Mol Gen Genet249:217–228 [CrossRef][PubMed]
    [Google Scholar]
  65. Serino L., Reimmann C., Visca P., Beyeler M., Chiesa V. D., Haas D.. ( 1997;). Biosynthesis of pyochelin and dihydroaeruginoic acid requires the iron-regulated pchDCBA operon in Pseudomonas aeruginosa. . J Bacteriol179:248–257[PubMed]
    [Google Scholar]
  66. Shin J.-H., Oh S.-Y., Kim S.-J., Roe J.-H.. ( 2007;). The zinc-responsive regulator Zur controls a zinc uptake system and some ribosomal proteins in Streptomyces coelicolor A3(2). J Bacteriol189:4070–4077 [CrossRef][PubMed]
    [Google Scholar]
  67. Sriyosachati S., Cox C. D.. ( 1986;). Siderophore-mediated iron acquisition from transferrin by Pseudomonas aeruginosa. . Infect Immun52:885–891[PubMed]
    [Google Scholar]
  68. Taguchi F., Suzuki T., Inagaki Y., Toyoda K., Shiraishi T., Ichinose Y.. ( 2010;). The siderophore pyoverdine of Pseudomonas syringae pv. tabaci 6605 is an intrinsic virulence factor in host tobacco infection. J Bacteriol192:117–126 [CrossRef][PubMed]
    [Google Scholar]
  69. Takase H., Nitanai H., Hoshino K., Otani T.. ( 2000;). Impact of siderophore production on Pseudomonas aeruginosa infections in immunosuppressed mice. Infect Immun68:1834–1839 [CrossRef][PubMed]
    [Google Scholar]
  70. Thomas M. S.. ( 2007;). Iron acquisition mechanisms of the Burkholderia cepacia complex. Biometals20:431–452 [CrossRef][PubMed]
    [Google Scholar]
  71. Youard Z. A., Mislin G. L. A., Majcherczyk P. A., Schalk I. J., Reimmann C.. ( 2007;). Pseudomonas fluorescens CHA0 produces enantio-pyochelin, the optical antipode of the Pseudomonas aeruginosa siderophore pyochelin. J Biol Chem282:35546–35553 [CrossRef][PubMed]
    [Google Scholar]
  72. Zou P.-J., Borovok I., Ortiz de Orué Lucana D., Müller D., Schrempf H.. ( 1999;). The mycelium-associated Streptomyces reticuli catalase-peroxidase, its gene and regulation by FurS. Microbiology145:549–559 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.047977-0
Loading
/content/journal/micro/10.1099/mic.0.047977-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error