1887

Abstract

is the causative microbial agent of lactococcosis, an important and damaging fish disease in aquaculture. This bacterium has also been isolated from vegetables, milk, cheese, meat and sausages, from cow and buffalo as a mastitis agent, and even from humans, as an opportunistic infectious agent. In this work pathogenicity experiments were performed in rainbow trout and mouse models with strains isolated from human ( HF) and rainbow trout ( UNIUDO74; henceforth referred to as 074). The mean LD value in rainbow trout obtained for strain 074 was 2.1×10±84 per fish. High doses of the bacteria caused specific signs of disease as well as histological alterations in mice. In contrast, strain HF did not prove to be pathogenic either for rainbow trout or for mice. Based on these virulence differences, two suppressive subtractive hybridizations were carried out to identify unique genetic sequences present in HF (SSHI) and 074 (SSHII). Differential dot-blot screening of the subtracted libraries allowed the identification of 26 and 13 putative ORFs specific for HF and 074, respectively. Additionally, a PCR-based screening of 12 of the 26 HF-specific putative ORFs and the 13 074-specific ones was conducted to identify their presence/absence in 25 strains isolated from different origins and geographical areas. This study demonstrates the existence of genetic heterogeneity within isolates and provides a more complete picture of the genetic background of this bacterium.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.047969-0
2011-07-01
2020-01-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/7/2106.html?itemId=/content/journal/micro/10.1099/mic.0.047969-0&mimeType=html&fmt=ahah

References

  1. Alegría A., Alvarez-Martín P., Sacristán N., Fernández E., Delgado S., Mayo B.. ( 2009;). Diversity and evolution of the microbial populations during manufacture and ripening of casín, a traditional Spanish, starter-free cheese made from cow's milk. Int J Food Microbiol136:44–51 [CrossRef][PubMed]
    [Google Scholar]
  2. Ammor S., Yaakoubi K., Chevallier I., Dufour E.. ( 2004;). Identification by fluorescence spectroscopy of lactic acid bacteria isolated from a small-scale facility producing traditional dry sausages. J Microbiol Methods59:271–281 [CrossRef][PubMed]
    [Google Scholar]
  3. Aubin G. G., Bémer P., Guillouzouic A., Crémet L., Touchais S., Fraquet N., Boutoille D., Reynaud A., Lepelletier D., Corvec S.. ( 2011;). First report of a hip prosthetic and joint infection caused by Lactococcus garvieae in a woman fishmonger. J Clin Microbiol49:2074–2076 [CrossRef][PubMed]
    [Google Scholar]
  4. Austin B., Austin D. A.. 2007; Bacterial Fish Pathogens, Disease of Farmed and Wild Fish, 4th edn. Godalming: Springer Praxis;
    [Google Scholar]
  5. Barakat R. K., Griffiths M. W., Harris L. J.. ( 2000;). Isolation and characterization of Carnobacterium, Lactococcus, and Enterococcus spp. from cooked, modified atmosphere packaged, refrigerated, poultry meat. Int J Food Microbiol62:83–94 [CrossRef][PubMed]
    [Google Scholar]
  6. Boekhorst J., Helmer Q., Kleerebezem M., Siezen R. J.. ( 2006;). Comparative analysis of proteins with a mucus-binding domain found exclusively in lactic acid bacteria. Microbiology152:273–280 [CrossRef][PubMed]
    [Google Scholar]
  7. Bohnsack J. F., Takahashi S., Detrick S. R., Pelinka L. R., Hammitt L. L., Aly A. A., Whiting A. A., Adderson E. E.. ( 2001;). Phylogenetic classification of serotype III group B streptococci on the basis of hylB gene analysis and DNA sequences specific to restriction digest pattern type III-3. J Infect Dis183:1694–1697 [CrossRef][PubMed]
    [Google Scholar]
  8. Boyd E. F., Brüssow H.. ( 2002;). Common themes among bacteriophage-encoded virulence factors and diversity among the bacteriophages involved. Trends Microbiol10:521–529 [CrossRef][PubMed]
    [Google Scholar]
  9. Carvalho M. G., Vianni M. C., Elliott J. A., Reeves M., Facklam R. R., Teixeira L. M.. ( 1997;). Molecular analysis of Lactococcus garvieae and Enterococcus gallinarum isolated from water buffalos with subclinical mastitis. Adv Exp Med Biol418:401–404[PubMed]
    [Google Scholar]
  10. Chan J. F., Woo P. C., Teng J. L., Lau S. K., Leung S. S., Tam F. C., Yuen K. Y.. ( 2011;). Primary infective spondylodiscitis caused by Lactococcus garvieae and a review of human L. garvieae infections . Infection [CrossRef][PubMed]
    [Google Scholar]
  11. Chen Z., Luong T. T., Lee C. Y.. ( 2007;). The sbcDC locus mediates repression of type 5 capsule production as part of the SOS response in Staphylococcus aureus . J Bacteriol189:7343–7350 [CrossRef][PubMed]
    [Google Scholar]
  12. ).
  13. Dàvila E., Zamora L. M., Pla M., Carretero C., Parés D.. ( 2006;). Identification and antagonistic activity of lactic acid bacteria occurring in porcine blood from industrial slaughterhouses – a preliminary study. Int J Food Microbiol107:207–211 [CrossRef][PubMed]
    [Google Scholar]
  14. Deivanayagam C. C., Rich R. L., Carson M., Owens R. T., Danthuluri S., Bice T., Höök M., Narayana S. V.. ( 2000;). Novel fold and assembly of the repetitive B region of the Staphylococcus aureus collagen-binding surface protein. Structure8:67–78 [CrossRef][PubMed]
    [Google Scholar]
  15. Devriese L. A., Hommez J., Laevens H., Pot B., Vandamme P., Haesebrouck F.. ( 1999;). Identification of aesculin-hydrolyzing streptococci, lactococci, aerococci and enterococci from subclinical intramammary infections in dairy cows. Vet Microbiol70:87–94 [CrossRef][PubMed]
    [Google Scholar]
  16. el-Adhami W. A., Stewart P. R., Matthaei K. I.. ( 1997;). The isolation and cloning of chromosomal DNA specific for a clonal population of Staphylococcus aureus by subtractive hybridisation. J Med Microbiol46:987–997 [CrossRef][PubMed]
    [Google Scholar]
  17. El-Baradei G., Delacroix-Buchet A., Ogier J. C.. ( 2007;). Biodiversity of bacterial ecosystems in traditional Egyptian Domiati cheese. Appl Environ Microbiol73:1248–1255 [CrossRef][PubMed]
    [Google Scholar]
  18. Eldar A., Ghittino C., Asanta L., Bozzetta E., Goria M., Prearo M., Bercovier H.. ( 1996;). Enterococcus seriolicida is a junior synonym of Lactococcus garvieae, a causative agent of septicemia and meningoencephalitis in fish. Curr Microbiol32:85–88 [CrossRef][PubMed]
    [Google Scholar]
  19. Eldar A., Goria M., Ghittino C., Zlotkin A., Bercovier H.. ( 1999;). Biodiversity of Lactococcus garvieae strains isolated from fish in Europe, Asia, and Australia. Appl Environ Microbiol65:1005–1008[PubMed]
    [Google Scholar]
  20. Elliott J. A., Collins M. D., Pigott N. E., Facklam R. R.. ( 1991;). Differentiation of Lactococcus lactis and Lactococcus garvieae from humans by comparison of whole-cell protein patterns. J Clin Microbiol29:2731–2734[PubMed]
    [Google Scholar]
  21. Eyngor M., Zlotkin A., Ghittino C., Prearo M., Douet D. G., Chilmonczyk S., Eldar A.. ( 2004;). Clonality and diversity of the fish pathogen Lactococcus garvieae in Mediterranean countries. Appl Environ Microbiol70:5132–5137 [CrossRef][PubMed]
    [Google Scholar]
  22. Fefer J. J., Ratzan K. R., Sharp S. E., Saiz E.. ( 1998;). Lactococcus garvieae endocarditis: report of a case and review of the literature. Diagn Microbiol Infect Dis32:127–130 [CrossRef][PubMed]
    [Google Scholar]
  23. Fihman V., Raskine L., Barrou Z., Kiffel C., Riahi J., Berçot B., Sanson-Le Pors M. J.. ( 2006;). Lactococcus garvieae endocarditis: identification by 16S rRNA and sodA sequence analysis. J Infect52:e3–e6 [CrossRef][PubMed]
    [Google Scholar]
  24. Flórez A. B., Mayo B.. ( 2006;). Microbial diversity and succession during the manufacture and ripening of traditional, Spanish, blue-veined Cabrales cheese, as determined by PCR-DGGE. Int J Food Microbiol110:165–171 [CrossRef][PubMed]
    [Google Scholar]
  25. Fortina M. G., Ricci G., Foschino R., Picozzi C., Dolci P., Zeppa G., Cocolin L., Manachini P. L.. ( 2007;). Phenotypic typing, technological properties and safety aspects of Lactococcus garvieae strains from dairy environments. J Appl Microbiol103:445–453 [CrossRef][PubMed]
    [Google Scholar]
  26. Foschino R., Nucera D., Volponi G., Picozzi C., Ortoffi M., Bottero M. T.. ( 2008;). Comparison of Lactococcus garvieae strains isolated in northern Italy from dairy products and fishes through molecular typing. J Appl Microbiol105:652–662 [CrossRef][PubMed]
    [Google Scholar]
  27. Foster T. J., Höök M.. ( 1998;). Surface protein adhesins of Staphylococcus aureus . Trends Microbiol6:484–488 [CrossRef][PubMed]
    [Google Scholar]
  28. Furutan N. P., Breiman M. A., Fischer M. A., Facklam R. R.. ( 1991;). Lactococcus garvieae infection in humans: a cause of prosthetic valve endocarditis [C297]. Proceedings of the 91st America Society of Microbiology Conference109 Dallas: American Society for Microbiology;
    [Google Scholar]
  29. Grkovic S., Brown M. H., Skurray R. A.. ( 2002;). Regulation of bacterial drug export systems. Microbiol Mol Biol Rev66:671–701 [CrossRef][PubMed]
    [Google Scholar]
  30. Hall T. A.. ( 1999;). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser41:95–98
    [Google Scholar]
  31. Hueck C. J.. ( 1998;). Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev62:379–433[PubMed]
    [Google Scholar]
  32. James P. R., Hardman S. M., Patterson D. L.. ( 2000;). Osteomyelitis and possible endocarditis secondary to Lactococcus garvieae: a first case report. Postgrad Med J76:301–303 [CrossRef][PubMed]
    [Google Scholar]
  33. Juíz-Río S., Osorio C. R., de Lorenzo V., Lemos M. L.. ( 2005;). Subtractive hybridization reveals a high genetic diversity in the fish pathogen Photobacterium damselae subsp. piscicida: evidence of a SXT-like element. Microbiology151:2659–2669 [CrossRef][PubMed]
    [Google Scholar]
  34. Kawanishi M., Kojima A., Ishihara K., Esaki H., Kijima M., Takahashi T., Suzuki S., Tamura Y.. ( 2005;). Drug resistance and pulsed-field gel electrophoresis patterns of Lactococcus garvieae isolates from cultured Seriola (yellowtail, amberjack and kingfish) in Japan. Lett Appl Microbiol40:322–328 [CrossRef][PubMed]
    [Google Scholar]
  35. Kawanishi M., Yoshida T., Yagashiro S., Kijima M., Yagyu K., Nakai T., Murakami M., Morita H., Suzuki S.. ( 2006;). Differences between Lactococcus garvieae isolated from the genus Seriola in Japan and those isolated from other animals (trout, terrestrial animals from Europe) with regard to pathogenicity, phage susceptibility and genetic characterization. J Appl Microbiol101:496–504 [CrossRef][PubMed]
    [Google Scholar]
  36. Kawanishi M., Yoshida T., Kijima M., Yagyu K., Nakai T., Okada S., Endo A., Murakami M., Suzuki S., Morita H.. ( 2007;). Characterization of Lactococcus garvieae isolated from radish and broccoli sprouts that exhibited a KG+ phenotype, lack of virulence and absence of a capsule. Lett Appl Microbiol44:481–487 [CrossRef][PubMed]
    [Google Scholar]
  37. Kim S. R., Nonaka L., Suzuki S.. ( 2004;). Occurrence of tetracycline resistance genes tet M and tet S in bacteria from marine aquaculture sites. FEMS Microbiol Lett237:147–156[CrossRef]
    [Google Scholar]
  38. Kong J., Josephsen J.. ( 2002;). The ability of the plasmid-encoded restriction and modification system LlaBIII to protect Lactococcus lactis against bacteriophages. Lett Appl Microbiol34:249–253 [CrossRef][PubMed]
    [Google Scholar]
  39. Kong J., Jytte J., Ma G. R.. ( 2001;). [Cloning and structure analysis of a restriction and modification system, LlaBIII from Lactococcus lactis subsp. cremoris W56]. Sheng Wu Gong Cheng Xue Bao17:663–668[PubMed]
    [Google Scholar]
  40. Kopermsub P., Yunchalard S.. ( 2010;). Identification of lactic acid bacteria associated with the production of plaa-som, a traditional fermented fish product of Thailand. Int J Food Microbiol138:200–204 [CrossRef][PubMed]
    [Google Scholar]
  41. Kubota H., Tsuji H., Matsuda K., Kurakawa T., Asahara T., Nomoto K.. ( 2010;). Detection of human intestinal catalase-negative, Gram-positive cocci by rRNA-targeted reverse transcription-PCR. Appl Environ Microbiol76:5440–5451 [CrossRef][PubMed]
    [Google Scholar]
  42. Lai Y. C., Yang S. L., Peng H. L., Chang H. Y.. ( 2000;). Identification of genes present specifically in a virulent strain of Klebsiella pneumoniae . Infect Immun68:7149–7151 [CrossRef][PubMed]
    [Google Scholar]
  43. Llosa M., Gomis-Rüth F. X., Coll M., de la Cruz Fd F.. ( 2002;). Bacterial conjugation: a two-step mechanism for DNA transport. Mol Microbiol45:1–8 [CrossRef][PubMed]
    [Google Scholar]
  44. Martínez J. L., Baquero F.. ( 2002;). Interactions among strategies associated with bacterial infection: pathogenicity, epidemicity, and antibiotic resistance. Clin Microbiol Rev15:647–679 [CrossRef][PubMed]
    [Google Scholar]
  45. Michel C., Pelletier C., Boussaha M., Douet D. G., Lautraite A., Tailliez P.. ( 2007;). Diversity of lactic acid bacteria associated with fish and the fish farm environment, established by amplified rRNA gene restriction analysis. Appl Environ Microbiol73:2947–2955 [CrossRef][PubMed]
    [Google Scholar]
  46. Mofredj A., Baraka D., Kloeti G., Dumont J. L.. ( 2000;). Lactococcus garvieae septicemia with liver abscess in an immunosuppressed patient. Am J Med109:513–514 [CrossRef][PubMed]
    [Google Scholar]
  47. Monedero V., Mazé A., Boël G., Zúñiga M., Beaufils S., Hartke A., Deutscher J.. ( 2007;). The phosphotransferase system of Lactobacillus casei: regulation of carbon metabolism and connection to cold shock response. J Mol Microbiol Biotechnol12:20–32 [CrossRef][PubMed]
    [Google Scholar]
  48. Mushegian A. R., Fullner K. J., Koonin E. V., Nester E. W.. ( 1996;). A family of lysozyme-like virulence factors in bacterial pathogens of plants and animals. Proc Natl Acad Sci U S A93:7321–7326 [CrossRef][PubMed]
    [Google Scholar]
  49. Neuhaus F. C., Baddiley J.. ( 2003;). A continuum of anionic charge: structures and functions of d-alanyl-teichoic acids in gram-positive bacteria. Microbiol Mol Biol Rev67:686–723 [CrossRef][PubMed]
    [Google Scholar]
  50. Niegowski D., Eshaghi S.. ( 2007;). The CorA family: structure and function revisited. Cell Mol Life Sci64:2564–2574 [CrossRef][PubMed]
    [Google Scholar]
  51. Nieto J. M., Devesa S., Quiroga I., Toranzo A. E.. ( 1995;). Histopathology of Enterococcus sp. infection in farmed turbot (Scophthalmus maximus L.). J Fish Dis18:21–30 [CrossRef]
    [Google Scholar]
  52. Nonaka L., Ikeno K., Suzuki S.. ( 2007;). Distribution of tetracycline resistance gene, tet M, in Gram-positive and Gram-negative bacteria isolated from sediment and seawater at a coastal aquaculture site in Japan. Microbes Environ22:355–364[CrossRef]
    [Google Scholar]
  53. O'Sullivan D. J., Klaenhammer T. R.. ( 1993;). Rapid mini-prep isolation of high-quality plasmid DNA from Lactococcus and Lactobacillus spp. Appl Environ Microbiol59:2730–2733[PubMed]
    [Google Scholar]
  54. Olivares-Fuster O., Arias C. R.. ( 2008;). Use of suppressive subtractive hybridization to identify Flavobacterium columnare DNA sequences not shared with Flavobacterium johnsoniae . Lett Appl Microbiol46:605–612 [CrossRef][PubMed]
    [Google Scholar]
  55. Pallen M. J.. ( 2002;). The ESAT-6/WXG100 superfamily – and a new Gram-positive secretion system?. Trends Microbiol10:209–212 [CrossRef][PubMed]
    [Google Scholar]
  56. Paludan-Müller C., Madsen M., Sophanodora P., Gram L., Møller P. L.. ( 2002;). Fermentation and microflora of plaa-som, a thai fermented fish product prepared with different salt concentrations. Int J Food Microbiol73:61–70 [CrossRef][PubMed]
    [Google Scholar]
  57. Parsons J. A., Bannam T. L., Devenish R. J., Rood J. I.. ( 2007;). TcpA, an FtsK/SpoIIIE homolog, is essential for transfer of the conjugative plasmid pCW3 in Clostridium perfringens . J Bacteriol189:7782–7790 [CrossRef][PubMed]
    [Google Scholar]
  58. Poncet S., Milohanic E., Mazé A., Nait Abdallah J., Aké F., Larribe M., Deghmane A. E., Taha M. K., Dozot M. et al. ( 2009;). Correlations between carbon metabolism and virulence in bacteria. Contrib Microbiol16:88–102 [CrossRef][PubMed]
    [Google Scholar]
  59. Pot B., Devnese L. A., Ursi D., Vandamme P., Haesebrouck F., Kersters K.. ( 1996;). Phenotypic identification and differentiation of Lactococcus strains isolated from animals. Syst Appl Microbiol19:213–222[PubMed][CrossRef]
    [Google Scholar]
  60. Rantsiou K., Urso R., Iacumin L., Cantoni C., Cattaneo P., Comi G., Cocolin L.. ( 2005;). Culture-dependent and -independent methods to investigate the microbial ecology of Italian fermented sausages. Appl Environ Microbiol71:1977–1986 [CrossRef][PubMed]
    [Google Scholar]
  61. Ravelo C., Magariños B., López-Romalde S., Toranzo A. E., Romalde J. L.. ( 2003;). Molecular fingerprinting of fish-pathogenic Lactococcus garvieae strains by random amplified polymorphic DNA analysis. J Clin Microbiol41:751–756 [CrossRef][PubMed]
    [Google Scholar]
  62. Reckseidler S. L., DeShazer D., Sokol P. A., Woods D. E.. ( 2001;). Detection of bacterial virulence genes by subtractive hybridization: identification of capsular polysaccharide of Burkholderia pseudomallei as a major virulence determinant. Infect Immun69:34–44 [CrossRef][PubMed]
    [Google Scholar]
  63. Reed L. J., Muench H.. ( 1938;). A simple method of estimating fifty per cent end points. Am J Epidemiol27:493–497
    [Google Scholar]
  64. Rozen S., Skaletsky H.. ( 2000;). Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol132:365–386
    [Google Scholar]
  65. Saier M. H. Jr, Reizer J.. ( 1994;). The bacterial phosphotransferase system: new frontiers 30 years later. Mol Microbiol13:755–764 [CrossRef][PubMed]
    [Google Scholar]
  66. Sambrook J., Russell D. W.. ( 2001;). Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  67. Soule M., Cain K., LaFrentz S., Call D. R.. ( 2005;). Combining suppression subtractive hybridization and microarrays to map the intraspecies phylogeny of Flavobacterium psychrophilum . Infect Immun73:3799–3802 [CrossRef][PubMed]
    [Google Scholar]
  68. Speziale P., Raucci G., Visai L., Switalski L. M., Timpl R., Höök M.. ( 1986;). Binding of collagen to Staphylococcus aureus Cowan 1. J Bacteriol167:77–81[PubMed]
    [Google Scholar]
  69. Swoboda J. G., Campbell J., Meredith T. C., Walker S.. ( 2010;). Wall teichoic acid function, biosynthesis, and inhibition. ChemBioChem11:35–45 [CrossRef][PubMed]
    [Google Scholar]
  70. Teixeira L. M., Merquior V. L., Vianni M. C., Carvalho M. G., Fracalanzza S. E., Steigerwalt A. G., Brenner D. J., Facklam R. R.. ( 1996;). Phenotypic and genotypic characterization of atypical Lactococcus garvieae strains isolated from water buffalos with subclinical mastitis and confirmation of L. garvieae as a senior subjective synonym of Enterococcus seriolicida . Int J Syst Bacteriol46:664–668 [CrossRef][PubMed]
    [Google Scholar]
  71. Thaker M., Spanogiannopoulos P., Wright G. D.. ( 2010;). The tetracycline resistome. Cell Mol Life Sci67:419–431[CrossRef]
    [Google Scholar]
  72. Vela A. I., Vázquez J., Gibello A., Blanco M. M., Moreno M. A., Liébana P., Albendea C., Alcalá B., Mendez A. et al. ( 2000;). Phenotypic and genetic characterization of Lactococcus garvieae isolated in Spain from lactococcosis outbreaks and comparison with isolates of other countries and sources. J Clin Microbiol38:3791–3795[PubMed]
    [Google Scholar]
  73. Vendrell D., Balcázar J. L., Ruiz-Zarzuela I., de Blas I., Gironés O., Múzquiz J. L.. ( 2006;). Lactococcus garvieae in fish: a review. Comp Immunol Microbiol Infect Dis29:177–198 [CrossRef][PubMed]
    [Google Scholar]
  74. Villani F., Aponte M., Blaiotta G., Mauriello G., Pepe O., Moschetti G.. ( 2001;). Detection and characterization of a bacteriocin, garviecin L1-5, produced by Lactococcus garvieae isolated from raw cow's milk. J Appl Microbiol90:430–439 [CrossRef][PubMed]
    [Google Scholar]
  75. Vinh D. C., Nichol K. A., Rand F., Embil J. M.. ( 2006;). Native-valve bacterial endocarditis caused by Lactococcus garvieae . Diagn Microbiol Infect Dis56:91–94 [CrossRef][PubMed]
    [Google Scholar]
  76. Wang C. Y., Shie H. S., Chen S. C., Huang J. P., Hsieh I. C., Wen M. S., Lin F. C., Wu D.. ( 2007;). Lactococcus garvieae infections in humans: possible association with aquaculture outbreaks. Int J Clin Pract61:68–73 [CrossRef][PubMed]
    [Google Scholar]
  77. Wang Y., Xu Z., Jia A., Chen J., Mo Z., Zhang X.. ( 2009;). Genetic diversity between two Vibrio anguillarum strains exhibiting different virulence by suppression subtractive hybridization. Wei Sheng Wu Xue Bao49:363–371[PubMed]
    [Google Scholar]
  78. Wilbring M., Alexiou K., Reichenspurner H., Matschke K., Tugtekin S. M.. ( 2011;). Lactococcus garvieae causing zoonotic prosthetic valve endocarditis. Clin Res Cardiol [CrossRef][PubMed]
    [Google Scholar]
  79. Winstanley C.. ( 2002;). Spot the difference: applications of subtractive hybridisation to the study of bacterial pathogens. J Med Microbiol51:459–467[PubMed]
    [Google Scholar]
  80. Zechner E. L., de la Cruz F., Eisenbrandt R., Grahn A. M., Koraimann G., Lanka E.. & al., e. ( 2000;). Conjugative DNA transfer processes. The Horizontal Gene Pool: Bacterial Plasmids and Gene Spread87–174 Thomas C. M.. Amsterdam: H. A. Publishers;
    [Google Scholar]
  81. Zhang Y. L., Ong C. T., Leung K. Y.. ( 2000;). Molecular analysis of genetic differences between virulent and avirulent strains of Aeromonas hydrophila isolated from diseased fish. Microbiology146:999–1009[PubMed]
    [Google Scholar]
  82. Zlotkin A., Eldar A., Ghittino C., Bercovier H.. ( 1998;). Identification of Lactococcus garvieae by PCR. J Clin Microbiol36:983–985[PubMed]
    [Google Scholar]
  83. Zuily S., Mami Z., Meune C.. ( 2011;). Lactococcus garvieae endocarditis. Arch Cardiovasc Dis104:138–139 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.047969-0
Loading
/content/journal/micro/10.1099/mic.0.047969-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error