1887

Abstract

A number of genetic determinants required for bacterial colonization of solid surfaces and biofilm formation have been identified in different micro-organisms. There are fewer accounts of mutations that favour the transition to a sessile mode of life. Here we report the isolation of random transposon KT2440 mutants showing increased biofilm formation, and the detailed characterization of one of them. This mutant exhibits a complex phenotype, including altered colony morphology, increased production of extracellular polymeric substances and enhanced swarming motility, along with the formation of denser and more complex biofilms than the parental strain. Sequence analysis revealed that the pleiotropic phenotype exhibited by the mutant resulted from the accumulation of two mutations: a transposon insertion, which disrupted a predicted outer membrane lipoprotein, and a point mutation in , a gene involved in the turnover of the large adhesin LapA. The contribution of each alteration to the phenotype and the possibility that prolonged sessile growth results in the selection of hyperadherent mutants are discussed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.047787-0
2011-08-01
2020-09-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/8/2257.html?itemId=/content/journal/micro/10.1099/mic.0.047787-0&mimeType=html&fmt=ahah

References

  1. Altman E., Brisson J. R., Perry M. B.. ( 1987;). Structure of the capsular polysaccharide of Haemophilus pleuropneumoniae serotype 5. Eur J Biochem170:185–192 [CrossRef][PubMed]
    [Google Scholar]
  2. Anderson G. G., O’Toole G. A.. ( 2008;). Innate and induced resistance mechanisms of bacterial biofilms. Curr Top Microbiol Immunol322:85–105 [CrossRef][PubMed]
    [Google Scholar]
  3. Banin E., Brady K. M., Greenberg E. P.. ( 2006;). Chelator-induced dispersal and killing of Pseudomonas aeruginosa cells in a biofilm. Appl Environ Microbiol72:2064–2069 [CrossRef][PubMed]
    [Google Scholar]
  4. Campisano A., Overhage J., Rehm B. H.. ( 2008;). The polyhydroxyalkanoate biosynthesis genes are differentially regulated in planktonic- and biofilm-grown Pseudomonas aeruginosa . J Biotechnol133:442–452[PubMed][CrossRef]
    [Google Scholar]
  5. Cérantola S., Bounéry J., Segonds C., Marty N., Montrozier H.. ( 2000;). Exopolysaccharide production by mucoid and non-mucoid strains of Burkholderia cepacia . FEMS Microbiol Lett185:243–246 [CrossRef][PubMed]
    [Google Scholar]
  6. Chai Y., Chu F., Kolter R., Losick R.. ( 2008;). Bistability and biofilm formation in Bacillus subtilis . Mol Microbiol67:254–263 [CrossRef][PubMed]
    [Google Scholar]
  7. Coenye T.. ( 2010;). Social interactions in the Burkholderia cepacia complex: biofilms and quorum sensing. Future Microbiol5:1087–1099 [CrossRef][PubMed]
    [Google Scholar]
  8. de Lorenzo V., Herrero M., Jakubzik U., Timmis K. N.. ( 1990;). Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in Gram-negative eubacteria. J Bacteriol172:6568–6572[PubMed]
    [Google Scholar]
  9. Dennis J. J., Zylstra G. J.. ( 1998;). Improved antibiotic-resistance cassettes through restriction site elimination using Pfu DNA polymerase PCR. Biotechniques25:772–774, 776[PubMed]
    [Google Scholar]
  10. Espinosa-Urgel M., Salido A., Ramos J. L.. ( 2000;). Genetic analysis of functions involved in adhesion of Pseudomonas putida to seeds. J Bacteriol182:2363–2369 [CrossRef][PubMed]
    [Google Scholar]
  11. Fernández-Piñar R., Ramos J. L., Rodríguez-Herva J. J., Espinosa-Urgel M.. ( 2008;). A two-component regulatory system integrates redox state and population density sensing in Pseudomonas putida . J Bacteriol190:7666–7674 [CrossRef][PubMed]
    [Google Scholar]
  12. Fussenegger M., Rudel T., Barten R., Ryll R., Meyer T. F.. ( 1997;). Transformation competence and type-4 pilus biogenesis in Neisseria gonorrhoeae – a review. Gene192:125–134 [CrossRef][PubMed]
    [Google Scholar]
  13. Gatsos X., Perry A. J., Anwari K., Dolezal P., Wolynec P. P., Likić V. A., Purcell A. W., Buchanan S. K., Lithgow T.. ( 2008;). Protein secretion and outer membrane assembly in Alphaproteobacteria . FEMS Microbiol Rev32:995–1009 [CrossRef][PubMed]
    [Google Scholar]
  14. Gjermansen M., Ragas P., Sternberg C., Molin S., Tolker-Nielsen T.. ( 2005;). Characterization of starvation-induced dispersion in Pseudomonas putida biofilms. Environ Microbiol7:894–904 [CrossRef][PubMed]
    [Google Scholar]
  15. Gjermansen M., Ragas P., Tolker-Nielsen T.. ( 2006;). Proteins with GGDEF and EAL domains regulate Pseudomonas putida biofilm formation and dispersal. FEMS Microbiol Lett265:215–224 [CrossRef][PubMed]
    [Google Scholar]
  16. Gjermansen M., Nilsson M., Yang L., Tolker-Nielsen T.. ( 2010;). Characterization of starvation-induced dispersion in Pseudomonas putida biofilms: genetic elements and molecular mechanisms. Mol Microbiol75:815–826 [CrossRef][PubMed]
    [Google Scholar]
  17. Hengge R.. ( 2009;). Principles of c-di-GMP signalling in bacteria. Nat Rev Microbiol7:263–273 [CrossRef][PubMed]
    [Google Scholar]
  18. Heydorn A., Nielsen A. T., Hentzer M., Sternberg C., Givskov M., Ersbøll B. K., Molin S.. ( 2000;). Quantification of biofilm structures by the novel computer program comstat . Microbiology146:2395–2407[PubMed]
    [Google Scholar]
  19. Hinsa S. M., Espinosa-Urgel M., Ramos J. L., O’Toole G. A.. ( 2003;). Transition from reversible to irreversible attachment during biofilm formation by Pseudomonas fluorescens WCS365 requires an ABC transporter and a large secreted protein. Mol Microbiol49:905–918 [CrossRef][PubMed]
    [Google Scholar]
  20. Høiby N., Bjarnsholt T., Givskov M., Molin S., Ciofu O.. ( 2010;). Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents35:322–332 [CrossRef][PubMed]
    [Google Scholar]
  21. Koch B., Jensen L. E., Nybroe O.. ( 2001;). A panel of Tn7-based vectors for insertion of the gfp marker gene or for delivery of cloned DNA into Gram-negative bacteria at a neutral chromosomal site. J Microbiol Methods45:187–195 [CrossRef][PubMed]
    [Google Scholar]
  22. Kovach M. E., Elzer P. H., Hill D. S., Robertson G. T., Farris M. A., Roop R. M. II, Peterson K. M.. ( 1995;). Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene166:175–176 [CrossRef][PubMed]
    [Google Scholar]
  23. Kuchma S. L., Brothers K. M., Merritt J. H., Liberati N. T., Ausubel F. M., O’Toole G. A.. ( 2007;). BifA, a cyclic-di-GMP phosphodiesterase, inversely regulates biofilm formation and swarming motility by Pseudomonas aeruginosa PA14. J Bacteriol189:8165–8178 [CrossRef][PubMed]
    [Google Scholar]
  24. Kuchma S. L., Ballok A. E., Merritt J. H., Hammond J. H., Lu W., Rabinowitz J. D., O’Toole G. A.. ( 2010;). Cyclic-di-GMP-mediated repression of swarming motility by Pseudomonas aeruginosa: the pilY1 gene and its impact on surface-associated behaviors. J Bacteriol192:2950–2964 [CrossRef][PubMed]
    [Google Scholar]
  25. Lennox E. S.. ( 1955;). Transduction of linked genetic characters of the host by bacteriophage P1. Virology1:190–206 [CrossRef][PubMed]
    [Google Scholar]
  26. Matilla M. A., Ramos J. L., Duque E., de Dios Alché J., Espinosa-Urgel M., Ramos-González M. I.. ( 2007;). Temperature and pyoverdine-mediated iron acquisition control surface motility of Pseudomonas putida . Environ Microbiol9:1842–1850 [CrossRef][PubMed]
    [Google Scholar]
  27. Matilla M. A., Travieso M. L., Ramos J. L., Ramos-González M. I.. ( 2011;). Cyclic diguanylate turnover mediated by the sole GGDEF/EAL response regulator in Pseudomonas putida: its role in the rhizosphere and an analysis of its target processes. Environ Microbiol [CrossRef][PubMed]
    [Google Scholar]
  28. Merritt J. H., Brothers K. M., Kuchma S. L., O’Toole G. A.. ( 2007;). SadC reciprocally influences biofilm formation and swarming motility via modulation of exopolysaccharide production and flagellar function. J Bacteriol189:8154–8164 [CrossRef][PubMed]
    [Google Scholar]
  29. Monds R. D., O’Toole G. A.. ( 2009;). The developmental model of microbial biofilms: ten years of a paradigm up for review. Trends Microbiol17:73–87 [CrossRef][PubMed]
    [Google Scholar]
  30. Nelson K. E., Weinel C., Paulsen I. T., Dodson R. J., Hilbert H., Martins dos Santos V. A. P., Fouts D. E., Gill S. R., Pop M. et al. ( 2002;). Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ Microbiol4:799–808 [CrossRef][PubMed]
    [Google Scholar]
  31. Newell P. D., Boyd C. D., Sondermann H., O’Toole G. A.. ( 2011;). A c-di-GMP effector system controls cell adhesion by inside-out signaling and surface protein cleavage. PLoS Biol9:e1000587 [CrossRef][PubMed]
    [Google Scholar]
  32. Nicolella C., van Loosdrecht M. C., Heijnen J. J.. ( 2000;). Wastewater treatment with particulate biofilm reactors. J Biotechnol80:1–33 [CrossRef][PubMed]
    [Google Scholar]
  33. Nielsen L., Li X., Halverson L. J.. ( 2011;). Cell–cell and cell–surface interactions mediated by cellulose and a novel exopolysaccharide contribute to Pseudomonas putida biofilm formation and fitness under water-limiting conditions. Environ Microbiol13:1342–1356 [CrossRef][PubMed]
    [Google Scholar]
  34. Nilsson M., Chiang W. C., Fazli M., Gjermansen M., Givskov M., Tolker-Nielsen T.. ( 2011;). Influence of putative exopolysaccharide genes on Pseudomonas putida KT2440 biofilm stability. Environ Microbiol13:1357–1369 [CrossRef][PubMed]
    [Google Scholar]
  35. O’Toole G. A., Kolter R.. ( 1998;). Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol Microbiol28:449–461 [CrossRef][PubMed]
    [Google Scholar]
  36. Patriquin G. M., Banin E., Gilmour C., Tuchman R., Greenberg E. P., Poole K.. ( 2008;). Influence of quorum sensing and iron on twitching motility and biofilm formation in Pseudomonas aeruginosa . J Bacteriol190:662–671 [CrossRef][PubMed]
    [Google Scholar]
  37. Pham T. H., Webb J. S., Rehm B. H.. ( 2004;). The role of polyhydroxyalkanoate biosynthesis by Pseudomonas aeruginosa in rhamnolipid and alginate production as well as stress tolerance and biofilm formation. Microbiology150:3405–3413 [CrossRef][PubMed]
    [Google Scholar]
  38. Regenhardt D., Heuer H., Heim S., Fernandez D. U., Strömpl C., Moore E. R. B., Timmis K. N.. ( 2002;). Pedigree and taxonomic credentials of Pseudomonas putida strain KT2440. Environ Microbiol4:912–915 [CrossRef][PubMed]
    [Google Scholar]
  39. Römling U., Simm R.. ( 2009;). Prevailing concepts of c-di-GMP signaling. Contrib Microbiol16:161–181 [CrossRef][PubMed]
    [Google Scholar]
  40. Sánchez-Torres V., Maeda T., Wood T. K.. ( 2010;). Global regulator H-NS and lipoprotein NlpI influence production of extracellular DNA in Escherichia coli . Biochem Biophys Res Commun401:197–202 [CrossRef][PubMed]
    [Google Scholar]
  41. Sauer K., Camper A. K.. ( 2001;). Characterization of phenotypic changes in Pseudomonas putida in response to surface-associated growth. J Bacteriol183:6579–6589 [CrossRef][PubMed]
    [Google Scholar]
  42. Sauer K., Camper A. K., Ehrlich G. D., Costerton J. W., Davies D. G.. ( 2002;). Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol184:1140–1154 [CrossRef][PubMed]
    [Google Scholar]
  43. Singh R., Paul D., Jain R. K.. ( 2006;). Biofilms: implications in bioremediation. Trends Microbiol14:389–397 [CrossRef][PubMed]
    [Google Scholar]
  44. Sturgill G., Toutain C. M., Komperda J., O’Toole G. A., Rather P. N.. ( 2004;). Role of CysE in production of an extracellular signaling molecule in Providencia stuartii and Escherichia coli: loss of CysE enhances biofilm formation in Escherichia coli . J Bacteriol186:7610–7617 [CrossRef][PubMed]
    [Google Scholar]
  45. Terada M., Kuroda T., Matsuyama S. I., Tokuda H.. ( 2001;). Lipoprotein sorting signals evaluated as the LolA-dependent release of lipoproteins from the cytoplasmic membrane of Escherichia coli . J Biol Chem276:47690–47694 [CrossRef][PubMed]
    [Google Scholar]
  46. Toutain C. M., Caizza N. C., Zegans M. E., O’Toole G. A.. ( 2007;). Roles for flagellar stators in biofilm formation by Pseudomonas aeruginosa . Res Microbiol158:471–477 [CrossRef][PubMed]
    [Google Scholar]
  47. Ueda A., Wood T. K.. ( 2009;). Connecting quorum sensing, c-di-GMP, Pel polysaccharide, and biofilm formation in Pseudomonas aeruginosa through tyrosine phosphatase TpbA (PA3885). PLoS Pathog5:e1000483 [CrossRef][PubMed]
    [Google Scholar]
  48. Uhlich G. A., Gunther N. W. IV, Bayles D. O., Mosier D. A.. ( 2009;). The CsgA and Lpp proteins of an Escherichia coli O157 : H7 strain affect HEp-2 cell invasion, motility, and biofilm formation. Infect Immun77:1543–1552 [CrossRef][PubMed]
    [Google Scholar]
  49. Vasseur P., Soscia C., Voulhoux R., Filloux A.. ( 2007;). PelC is a Pseudomonas aeruginosa outer membrane lipoprotein of the OMA family of proteins involved in exopolysaccharide transport. Biochimie89:903–915 [CrossRef][PubMed]
    [Google Scholar]
  50. Vílchez S., Molina L., Ramos C., Ramos J. L.. ( 2000;). Proline catabolism by Pseudomonas putida: cloning, characterization, and expression of the put genes in the presence of root exudates. J Bacteriol182:91–99 [CrossRef][PubMed]
    [Google Scholar]
  51. Yamaguchi K., Yu F., Inouye M.. ( 1988;). A single amino acid determinant of the membrane localization of lipoproteins in E. coli . Cell53:423–432 [CrossRef][PubMed]
    [Google Scholar]
  52. Yousef-Coronado F., Travieso M. L., Espinosa-Urgel M.. ( 2008;). Different, overlapping mechanisms for colonization of abiotic and plant surfaces by Pseudomonas putida . FEMS Microbiol Lett288:118–124 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.047787-0
Loading
/content/journal/micro/10.1099/mic.0.047787-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error