1887

Abstract

Diacetyl and acetoin are pyruvate-derived metabolites excreted by many micro-organisms, and are important in their physiology. Although generation of these four-carbon (C4) compounds in is a well-documented phenotype, little is known about the gene regulation of their biosynthetic pathway and the physiological role of the pathway in this bacterium. In this work, we identified the genes involved in C4 compound biosynthesis in and report their transcriptional analysis. These genes are part of the bicistronic operon, which encodes α-acetolactate synthase (AlsS) and α-acetolactate decarboxylase (AlsD). Our studies showed that operon transcription levels are maximal during the exponential phase of growth, decreasing thereafter. Furthermore, we found that this transcription is enhanced upon addition of pyruvate to the growth medium. In order to study the functional role of the operon, an isogenic mutant strain was constructed. This strain lost its capacity to generate C4 compounds, confirming the role of genes in this metabolic pathway. In contrast to the wild-type strain, the -deficient strain was unable to grow in LB medium supplemented with pyruvate at an initial pH of 4.5. This dramatic reduction in growth parameters for the mutant strain was simultaneously accompanied by the inability to alkalinize the internal and external medium under these conditions. In sum, these results suggest that the decarboxylation reactions related to the C4 biosynthetic pathway give enterococcal cells a competitive advantage during pyruvate metabolism at low pH.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.047662-0
2011-09-01
2020-10-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/9/2708.html?itemId=/content/journal/micro/10.1099/mic.0.047662-0&mimeType=html&fmt=ahah

References

  1. Ahn J. S., Chandramohan L., Liou L. E., Bayles K. W.. ( 2006;). Characterization of CidR-mediated regulation in Bacillus anthracis reveals a previously undetected role of S-layer proteins as murein hydrolases. Mol Microbiol62:1158–1169 [CrossRef][PubMed]
    [Google Scholar]
  2. Breeuwer P., Drocourt J., Rombouts F. M., Abee T.. ( 1996;). A novel method for continuous determination of the intracellular pH in bacteria with the internally conjugated fluorescent probe 5 (and 6-)-carboxyfluorescein succinimidyl ester. Appl Environ Microbiol62:178–183[PubMed]
    [Google Scholar]
  3. Cotter P. D., Hill C.. ( 2003;). Surviving the acid test: responses of Gram-positive bacteria to low pH. Microbiol Mol Biol Rev67:429–453 [CrossRef][PubMed]
    [Google Scholar]
  4. Deibel R. H., Niven C. F. Jr. ( 1964;). Pyruvate fermentation by Streptococcus faecalis . J Bacteriol88:4–10[PubMed]
    [Google Scholar]
  5. Fertally S. S., Facklam R.. ( 1987;). Comparison of physiologic tests used to identify non-beta-hemolytic aerococci, enterococci, and streptococci. J Clin Microbiol25:1845–1850[PubMed]
    [Google Scholar]
  6. Foulquié Moreno M. R., Sarantinopoulos P., Tsakalidou E., De Vuyst L.. ( 2006;). The role and application of enterococci in food and health. Int J Food Microbiol106:1–24 [CrossRef][PubMed]
    [Google Scholar]
  7. Franz C. M. A. P., Stiles M. E., Schleifer K. H., Holzapfel W. H.. ( 2003;). Enterococci in foods – a conundrum for food safety. Int J Food Microbiol88:105–122 [CrossRef][PubMed]
    [Google Scholar]
  8. Friesenegger A., Fiedler S., Devriese L. A., Wirth R.. ( 1991;). Genetic transformation of various species of Enterococcus by electroporation. FEMS Microbiol Lett79:323–328 [CrossRef][PubMed]
    [Google Scholar]
  9. García-Quintáns N., Repizo G., Martín M., Magni C., López P.. ( 2008;). Activation of the diacetyl/acetoin pathway in Lactococcus lactis subsp. lactis bv. diacetylactis CRL264 by acidic growth. Appl Environ Microbiol74:1988–1996 [CrossRef][PubMed]
    [Google Scholar]
  10. Giraffa G.. ( 2003;). Functionality of enterococci in dairy products. Int J Food Microbiol88:215–222 [CrossRef][PubMed]
    [Google Scholar]
  11. Hanahan D.. ( 1983;). Studies on transformation of Escherichia coli with plasmids. J Mol Biol166:557–580 [CrossRef][PubMed]
    [Google Scholar]
  12. Hugenholtz J., Starrenburg M. J. C.. ( 1992;). Diacetyl production by different strains of Lactococcus lactis subsp. lactis var. diacetylactis and Leuconostoc spp. Appl Microbiol Biotechnol38:17–22[CrossRef]
    [Google Scholar]
  13. Israelsen H., Madsen S. M., Vrang A., Hansen E. B., Johansen E.. ( 1995;). Cloning and partial characterization of regulated promoters from Lactococcus lactis Tn917-lacZ integrants with the new promoter probe vector, pAK80. Appl Environ Microbiol61:2540–2547[PubMed]
    [Google Scholar]
  14. Jacob A. E., Hobbs S. J.. ( 1974;). Conjugal transfer of plasmid-borne multiple antibiotic resistance in Streptococcus faecalis var. zymogenes . J Bacteriol117:360–372[PubMed]
    [Google Scholar]
  15. Jarmer H., Larsen T. S., Krogh A., Saxild H. H., Brunak S., Knudsen S.. ( 2001;). Sigma A recognition sites in the Bacillus subtilis genome. Microbiology147:2417–2424[PubMed]
    [Google Scholar]
  16. Jönsson M., Saleihan Z., Nes I. F., Holo H.. ( 2009;). Construction and characterization of three lactate dehydrogenase-negative Enterococcus faecalis V583 mutants. Appl Environ Microbiol75:4901–4903 [CrossRef][PubMed]
    [Google Scholar]
  17. Kinsinger R. F., Kearns D. B., Hale M., Fall R.. ( 2005;). Genetic requirements for potassium ion-dependent colony spreading in Bacillus subtilis . J Bacteriol187:8462–8469 [CrossRef][PubMed]
    [Google Scholar]
  18. Kovacikova G., Lin W., Skorupski K.. ( 2005;). Dual regulation of genes involved in acetoin biosynthesis and motility/biofilm formation by the virulence activator AphA and the acetate-responsive LysR-type regulator AlsR in Vibrio cholerae . Mol Microbiol57:420–433 [CrossRef][PubMed]
    [Google Scholar]
  19. Law J., Buist G., Haandrikman A., Kok J., Venema G., Leenhouts K.. ( 1995;). A system to generate chromosomal mutations in Lactococcus lactis which allows fast analysis of targeted genes. J Bacteriol177:7011–7018[PubMed]
    [Google Scholar]
  20. Leblanc D. J.. ( 2006;). Enterococcus. Prokaryotesvol. 4175–204 Dworkin M., Falkow S., Rosenberg E., Schleifer K., Stackenbrandt E.. New York: Springer Science+Business Media; [CrossRef]
    [Google Scholar]
  21. Lolkema J. S., Poolman B., Konings W. N.. ( 1995;). Role of scalar protons in metabolic energy generation in lactic acid bacteria. J Bioenerg Biomembr27:467–473 [CrossRef][PubMed]
    [Google Scholar]
  22. Maguin E., Prévost H., Ehrlich S. D., Gruss A.. ( 1996;). Efficient insertional mutagenesis in lactococci and other Gram-positive bacteria. J Bacteriol178:931–935[PubMed]
    [Google Scholar]
  23. Marelli B. E., Magni C.. ( 2010;). A simple expression system for Lactococcus lactis and Enterococcus faecalis . J Microbiol Biotechnol26:999–1007 [CrossRef]
    [Google Scholar]
  24. Martín M. G., Sender P. D., Peirú S., de Mendoza D., Magni C.. ( 2004;). Acid-inducible transcription of the operon encoding the citrate lyase complex of Lactococcus lactis biovar diacetylactis CRL264. J Bacteriol186:5649–5660 [CrossRef][PubMed]
    [Google Scholar]
  25. Mathews D. H., Sabina J., Zuker M., Turner D. H.. ( 1999;). Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol288:911–940 [CrossRef][PubMed]
    [Google Scholar]
  26. Mayer D., Schlensog V., Böck A.. ( 1995;). Identification of the transcriptional activator controlling the butanediol fermentation pathway in Klebsiella terrigena . J Bacteriol177:5261–5269[PubMed]
    [Google Scholar]
  27. Molenaar D., Abee T., Konings W. N.. ( 1991;). Continuous measurement of the cytoplasmic pH in Lactococcus lactis with a fluorescent pH indicator. Biochim Biophys Acta1115:75–83[PubMed][CrossRef]
    [Google Scholar]
  28. Nallapareddy S. R., Duh R. W., Singh K. V., Murray B. E.. ( 2002;). Molecular typing of selected Enterococcus faecalis isolates: pilot study using multilocus sequence typing and pulsed-field gel electrophoresis. J Clin Microbiol40:868–876 [CrossRef][PubMed]
    [Google Scholar]
  29. Ogier J. C., Serror P.. ( 2008;). Safety assessment of dairy microorganisms: the Enterococcus genus. Int J Food Microbiol126:291–301 [CrossRef][PubMed]
    [Google Scholar]
  30. Poyart C., Trieu-Cuot P.. ( 1997;). A broad-host-range mobilizable shuttle vector for the construction of transcriptional fusions to β-galactosidase in Gram-positive bacteria. FEMS Microbiol Lett156:193–198 [CrossRef][PubMed]
    [Google Scholar]
  31. Renna M. C., Najimudin N., Winik L. R., Zahler S. A.. ( 1993;). Regulation of the Bacillus subtilis alsS, alsD, and alsR genes involved in post-exponential-phase production of acetoin. J Bacteriol175:3863–3875[PubMed]
    [Google Scholar]
  32. Sambrook J., Fritsch E. F., Maniatis T.. ( 1989;). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  33. Snoep J. L., de Graef M. R., Teixeira de Mattos M. J., Neijssel O. M.. ( 1992a;). Pyruvate catabolism during transient state conditions in chemostat cultures of Enterococcus faecalis NCTC 775: importance of internal pyruvate concentrations and NADH/NAD+ ratios. J Gen Microbiol138:2015–2020[PubMed][CrossRef]
    [Google Scholar]
  34. Snoep J. L., Westphal A. H., Benen J. A., Teixeira de Mattos M. J., Neijssel O. M., de Kok A.. ( 1992b;). Isolation and characterisation of the pyruvate dehydrogenase complex of anaerobically grown Enterococcus faecalis NCTC 775. Eur J Biochem203:245–250 [CrossRef][PubMed]
    [Google Scholar]
  35. Tsau J. L., Guffanti A. A., Montville T. J.. ( 1992;). Conversion of pyruvate to acetoin helps to maintain pH homeostasis in Lactobacillus plantarum . Appl Environ Microbiol58:891–894
    [Google Scholar]
  36. Turinsky A. J., Moir-Blais T. R., Grundy F. J., Henkin T. M.. ( 2000;). Bacillus subtilis ccpA gene mutants specifically defective in activation of acetoin biosynthesis. J Bacteriol182:5611–5614 [CrossRef][PubMed]
    [Google Scholar]
  37. Weinrick B., Dunman P. M., McAleese F., Murphy E., Projan S. J., Fang Y., Novick R. P.. ( 2004;). Effect of mild acid on gene expression in Staphylococcus aureus . J Bacteriol186:8407–8423 [CrossRef][PubMed]
    [Google Scholar]
  38. Wilks J. C., Kitko R. D., Cleeton S. H., Lee G. E., Ugwu C. S., Jones B. D., BonDurant S. S., Slonczewski J. L.. ( 2009;). Acid and base stress and transcriptomic responses in Bacillus subtilis . Appl Environ Microbiol75:981–990 [CrossRef][PubMed]
    [Google Scholar]
  39. Xiao Z., Xu P.. ( 2007;). Acetoin metabolism in bacteria. Crit Rev Microbiol33:127–140 [CrossRef][PubMed]
    [Google Scholar]
  40. Yoon S. S., Mekalanos J. J.. ( 2006;). 2,3-Butanediol synthesis and the emergence of the Vibrio cholerae El Tor biotype. Infect Immun74:6547–6556 [CrossRef][PubMed]
    [Google Scholar]
  41. Zuker M.. ( 2003;). Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res31:3406–3415 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.047662-0
Loading
/content/journal/micro/10.1099/mic.0.047662-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error