1887

Abstract

population dynamics and diversity in rats fed diets differing in their crude fibre content were assessed. Female Wistar rats ( = 40) were fed diets containing 1, 4, 18 or 26 % crude fibre. Animals were housed in pairs, and one animal was inoculated with a phylogroup B1 strain of , the other with a phylogroup B2 strain. Natural strain transmission was allowed to occur between the animals in each cage. As expected, the diets had a significant effect on gut dynamics. Mean gut retention times were shorter in animals fed the 18 and 26 % crude fibre diets compared with animals on the low-fibre diets. The effect of diet on gastrointestinal dynamics in turn affected population dynamics and clonal composition. Animals fed the low-fibre diets had higher cell densities than animals fed the high-fibre diets. populations dominated by phylogroup B2 strains exhibited lower cell densities in animals fed the high-fibre diets compared with cell densities in animals fed the low-fibre diets. Overall, cell densities declined as gut transit times decreased. Results from this experiment support the results garnered from prospective studies examining the distribution of from hosts with differing diets, gut morphology and dynamics.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.047092-0
2011-05-01
2020-08-12
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/5/1375.html?itemId=/content/journal/micro/10.1099/mic.0.047092-0&mimeType=html&fmt=ahah

References

  1. AACC ( 2001;). The definition of dietary fibre. Report of the dietary fibre definition committee to the board of directors of the American Association of Cereal Chemists. 46:112–126
    [Google Scholar]
  2. Ballyk M. M., Smith H. L.. ( 1999;). A model of microbial growth in a plug flow reactor with wall attachment. Math Biosci158:95–126 [CrossRef][PubMed]
    [Google Scholar]
  3. Ballyk M. M., Jones D. A., Smith H. L.. ( 2001;). Microbial competition in reactors with wall attachment: a mathematical comparison of chemostat and plug flow models. Microb Ecol41:210–221[PubMed][CrossRef]
    [Google Scholar]
  4. Björnhag G.. ( 1994;). Adaptations in the large intestine allowing small animals to eat fibrous foods. In The Digestive System in Mammals: Food, Form and FunctionEdited by Chivers D. J., Langer P.. Cambridge, UK: Cambridge University Press; [CrossRef]
    [Google Scholar]
  5. Campbell J. L., Williams C. V., Eisemann J. H.. ( 2004;). Use of total dietary fiber across four lemur species (Propithecus verreauxi coquereli, Hapalemur griseus griseus, Varecia variegata, and Eulemur fulvus): does fiber type affect digestive efficiency?. Am J Primatol64:323–335 [CrossRef][PubMed]
    [Google Scholar]
  6. Carlos C., Pires M. M., Stoppe N. C., Hachich E. M., Sato M. I., Gomes T. A., Amaral L. A., Ottoboni L. M.. ( 2010;). Escherichia coli phylogenetic group determination and its application in the identification of the major animal source of fecal contamination. BMC Microbiol10:161 [CrossRef][PubMed]
    [Google Scholar]
  7. Caton J. M.. 1997; Digestive strategies of non-human primates. PhD thesis Australian National University; Australia:
  8. Chilcott M. J., Hume I. D.. ( 1985;). Coprophagy and selective retention of fluid digesta: their role in the nutrition of the common ringtail possum, Pseudocheirus peregrinus . Aust J Zool33:1–15 [CrossRef]
    [Google Scholar]
  9. Clermont O., Bonacorsi S., Bingen E.. ( 2000;). Rapid and simple determination of the Escherichia coli phylogenetic group. Appl Environ Microbiol66:4555–4558 [CrossRef][PubMed]
    [Google Scholar]
  10. Córdova-Fraga T., De la Roca-Chiapas J. M., Solís S., Sosa M., Bernal-Alvarado J., Hernández E., Hernández-González M.. ( 2008;). Gender difference in the gastric emptying measured by magnetogastrography using a semi-solid test meal. Acta Gastroenterol Latinoam38:240–245[PubMed]
    [Google Scholar]
  11. Cummings J. H.. 1997; The Large Intestine in Nutrition and Disease. Danone Chair Monograph Brussels, Belgium: Institut Danone;
    [Google Scholar]
  12. Durbán A., Abellán J. J., Jiménez-Hernández N., Ponce M., Ponce J., Sala T., D’Auria G., Latorre A., Moya A.. ( 2011;). Assessing gut microbial diversity from feces and rectal mucosa. Microb Ecol61:123–133[CrossRef]
    [Google Scholar]
  13. Eckburg P. B., Bik E. M., Bernstein C. N., Purdom E., Dethlefsen L., Sargent M., Gill S. R., Nelson K. E., Relman D. A.. ( 2005;). Diversity of the human intestinal microbial flora. Science308:1635–1638 [CrossRef][PubMed]
    [Google Scholar]
  14. Escobar-Páramo P., Le Menac’h A., Le Gall T., Amorin C., Gouriou S., Picard B., Skurnik D., Denamur E.. ( 2006;). Identification of forces shaping the commensal Escherichia coli genetic structure by comparing animal and human isolates. Environ Microbiol8:1975–1984 [CrossRef][PubMed]
    [Google Scholar]
  15. FAO/WHO ( 1998;). Carbohydrates in human nutrition: report of a joint FAO/WHO expert consultation. FAO Food Nutr Pap66:1–140
    [Google Scholar]
  16. Felicetti L. A., Shipley L. A., Witmer G. W., Robbins C. T.. ( 2000;). Digestibility, nitrogen excretion, and mean retention time by North American porcupines (Erethizon dorsatum) consuming natural forages. Physiol Biochem Zool73:772–780 [CrossRef][PubMed]
    [Google Scholar]
  17. Gordon D. M., Cowling A.. ( 2003;). The distribution and genetic structure of Escherichia coli in Australian vertebrates: host and geographic effects. Microbiology149:3575–3586 [CrossRef][PubMed]
    [Google Scholar]
  18. Gordon D. M., Lee J.. ( 1999;). The genetic structure of enteric bacteria from Australian mammals. Microbiology145:2673–2682[PubMed]
    [Google Scholar]
  19. Gordon D. M., Stern S. E., Collignon P. J.. ( 2005;). Influence of the age and sex of human hosts on the distribution of Escherichia coli ECOR groups and virulence traits. Microbiology151:15–23 [CrossRef][PubMed]
    [Google Scholar]
  20. Gordon D. M., Clermont O., Tolley H., Denamur E.. ( 2008;). Assigning Escherichia coli strains to phylogenetic groups: multi-locus sequence typing versus the PCR triplex method. Environ Microbiol10:2484–2496 [CrossRef][PubMed]
    [Google Scholar]
  21. Graff J., Brinch K., Madsen J. L.. ( 2001;). Gastrointestinal mean transit times in young and middle-aged healthy subjects. Clin Physiol21:253–259 [CrossRef][PubMed]
    [Google Scholar]
  22. Herrera M. L., Martínez Del Río C.. ( 1998;). Pollen digestion by New World bats: effects of processing time and feeding habits. Ecology79:2828–2838 [CrossRef]
    [Google Scholar]
  23. Hounnou G., Destrieux C., Desmé J., Bertrand P., Velut S.. ( 2002;). Anatomical study of the length of the human intestine. Surg Radiol Anat24:290–294 [CrossRef][PubMed]
    [Google Scholar]
  24. Hume I. D.. ( 1999;). Marsupial Nutrition Cambridge: Cambridge University Press;
    [Google Scholar]
  25. Hume I. D., Morgan K. R., Kenagy G. J.. ( 1993;). Digesta retention and digestive performance in sciurid and microtine rodents: effects of hindgut morphology and body size. Physiol Zool66:396–411
    [Google Scholar]
  26. Jakobsson H. E., Jernberg C., Andersson A. F., Sjölund-Karlsson M., Jansson J. K., Engstrand L.. ( 2010;). Short-term antibiotic treatment has differing long-term impacts on the human throat and gut microbiome. PLoS ONE5:e9836 [CrossRef][PubMed]
    [Google Scholar]
  27. Jones D., Le D., Smith H., Kojouharov H. V. ( 2002;). Bacterial wall attachment in a flow reactor. SIAM J Appl Math62:1728–1771 [CrossRef]
    [Google Scholar]
  28. Karasov W. H., Diamond J. M.. ( 1988;). Interplay between physiology and ecology in digestion: intestinal nutrient transporters vary within and between species. Bioscience38:602–611 [CrossRef]
    [Google Scholar]
  29. Khachatryan Z. A., Ktsoyan Z. A., Manukyan G. P., Kelly D., Ghazaryan K. A., Aminov R. I.. ( 2008;). Predominant role of host genetics in controlling the composition of gut microbiota. PLoS ONE3:e3064 [CrossRef][PubMed]
    [Google Scholar]
  30. Klite P. D.. ( 1965;). Intestinal flora and transit time of three neotropical bat species. J Bacteriol90:375–379[PubMed]
    [Google Scholar]
  31. Lee W. B., Houston D. C.. ( 1993;). The effect of diet quality on gut anatomy in British voles (Microtinae). J Comp Physiol B163:337–339 [CrossRef][PubMed]
    [Google Scholar]
  32. Mancina C. A., Balseiro F.. Herrera M.. ( 2005;). Pollen digestion by nectarivorous and frugivorous Antillean bats. Mamm Biol70:282–290 [CrossRef]
    [Google Scholar]
  33. McOrist A., Veuilett G., Vuaran M., Bird A., Noakes M., Topping D.. ( 2005;). Population and virulence factor dynamics in fecal Escherichia coli from healthy adults consuming weight control diets. Can J Microbiol51:467–475 [CrossRef][PubMed]
    [Google Scholar]
  34. Mobley H. L. T., Warren J. W.. ( 1996;). The vagina flora and urinary tract infections. In Urinary Tract Infections: Molecular Pathogenesis and Clinical Managementvol. 3 pp67–94Edited by Hooton T. M., Stamm W. E.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  35. National Research Council ( 1972;). Nutrient requirements of the laboratory rat. In Editorial Committee on Animal Nutrition. Nutritional Requirements of Laboratory Animals pp56–93 Washington, DC: National Academy of Science;
    [Google Scholar]
  36. Palmer C., Bik E. M., DiGiulio D. B., Relman D. A., Brown P. O.. ( 2007;). Development of the human infant intestinal microbiota. PLoS Biol5:e177 [CrossRef][PubMed]
    [Google Scholar]
  37. Pei Y. X., Wang D. H., Hume I. D.. ( 2001;a). Selective digesta retention and coprophagy in Brandt’s vole (Microtus brandti). J Comp Physiol B171:457–464 [CrossRef][PubMed]
    [Google Scholar]
  38. Pei Y. X., Wang D.-H., Hume I. D.. ( 2001;b). Effects of dietary fibre on digesta passage, nutrient digestibility, and gastrointestinal tract morphology in the granivorous Mongolian gerbil (Meriones unguiculatus). Physiol Biochem Zool74:742–749 [CrossRef][PubMed]
    [Google Scholar]
  39. Pupo G. M., Lan R., Reeves P. R., Baverstock P. R.. ( 2000;). Population genetics of Escherichia coli in a natural population of native Australian rats. Environ Microbiol2:594–610 [CrossRef][PubMed]
    [Google Scholar]
  40. Russo T. A., Johnson J. R.. ( 2003;). Medical and economic impact of extraintestinal infections due to Escherichia coli: focus on an increasingly important endemic problem. Microbes Infect5:449–456 [CrossRef][PubMed]
    [Google Scholar]
  41. Sakaguchi E.. ( 2003;). Digestive strategies of small hindgut fermenters. Anim Sci J74:327–337 [CrossRef]
    [Google Scholar]
  42. Smith H. L., Waltman P.. ( 1995;). The Theory of the Chemostat Cambridge: Cambridge University Press; [CrossRef]
    [Google Scholar]
  43. Steffen R., Castelli F., Dieter Nothdurft H., Rombo L., Zuckerman J. N.. ( 2005;). Vaccination against enterotoxigenic Escherichia coli, a cause of travelers’ diarrhea. J Travel Med12:102–107 [CrossRef][PubMed]
    [Google Scholar]
  44. Tenaillon O., Skurnik D., Picard B., Denamur E.. ( 2010;). The population genetics of commensal Escherichia coli . Nat Rev Microbiol8:207–217 [CrossRef][PubMed]
    [Google Scholar]
  45. Turnbaugh P. J., Ridaura V. K., Faith J. J., Rey F. E., Knight R., Gordon J. I.. ( 2009;). The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med1:6–14[PubMed][CrossRef]
    [Google Scholar]
  46. Van Soest P. J., Robertson J. B., Lewis B. A.. ( 1991;). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci74:3583–3597 [CrossRef][PubMed]
    [Google Scholar]
  47. Ventura M., Canchaya C., Tauch A., Chandra G., Fitzgerald G. F., Chater K. F., van Sinderen D.. ( 2007;). Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum. Microbiol Mol Biol Rev71:495–548 [CrossRef][PubMed]
    [Google Scholar]
  48. Versalovic J., Koeuth T., Lupski J. R.. ( 1991;). Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res19:6823–6831 [CrossRef][PubMed]
    [Google Scholar]
  49. Wennerås C., Erling V.. ( 2004;). Prevalence of enterotoxigenic Escherichia coli-associated diarrhoea and carrier state in the developing world. J Health Popul Nutr22:370–382[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.047092-0
Loading
/content/journal/micro/10.1099/mic.0.047092-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error