1887

Abstract

The human pathogen uses quorum sensing to regulate the expression of a number of phenotypes, including virulence factor production, in response to changes in cell density. It produces small molecules called autoinducers that increase in concentration as cell density increases, and these autoinducers bind to membrane sensors once they reach a certain threshold. This binding leads to signalling through a downstream phosphorelay pathway to alter the expression of the transcriptional regulator HapR. Previously, it was shown that the VarS/VarA two-component system acts on a component of the phosphorelay pathway upstream of HapR to regulate HapR expression levels. Here, we show that in addition to this mechanism of regulation, VarS and VarA also indirectly modulate HapR protein activity. This modulation is mediated by the small RNA CsrB but is independent of the known quorum-sensing system that links the autoinducers to HapR. Thus, the VarS/VarA two-component system intersects with the quorum-sensing network at two levels. In both cases, the effect of VarS and VarA on quorum sensing is dependent on the Csr small RNAs, which regulate carbon metabolism, suggesting that may integrate nutrient status and cell density sensory inputs to tailor its gene expression profile more precisely to surrounding conditions.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.046235-0
2011-06-01
2019-12-07
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/6/1620.html?itemId=/content/journal/micro/10.1099/mic.0.046235-0&mimeType=html&fmt=ahah

References

  1. Chiang S. L., Mekalanos J. J.. ( 1999;). rfb mutations in Vibrio cholerae do not affect surface production of toxin-coregulated pili but still inhibit intestinal colonization. . Infect Immun 67:, 976–980.[PubMed]
    [Google Scholar]
  2. De Silva R. S., Kovacikova G., Lin W., Taylor R. K., Skorupski K., Kull F. J.. ( 2007;). Crystal structure of the Vibrio cholerae quorum-sensing regulatory protein HapR. . J Bacteriol 189:, 5683–5691. [CrossRef].[PubMed]
    [Google Scholar]
  3. Gao R., Mack T. R., Stock A. M.. ( 2007;). Bacterial response regulators: versatile regulatory strategies from common domains. . Trends Biochem Sci 32:, 225–234. [CrossRef].[PubMed]
    [Google Scholar]
  4. Guzman L. M., Belin D., Carson M. J., Beckwith J.. ( 1995;). Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. . J Bacteriol 177:, 4121–4130.[PubMed]
    [Google Scholar]
  5. Hammer B. K., Bassler B. L.. ( 2003;). Quorum sensing controls biofilm formation in Vibrio cholerae. . Mol Microbiol 50:, 101–104. [CrossRef].[PubMed]
    [Google Scholar]
  6. Heeb S., Haas D.. ( 2001;). Regulatory roles of the GacS/GacA two-component system in plant-associated and other Gram-negative bacteria. . Mol Plant–Microbe Interact 14:, 1351–1363. [CrossRef].[PubMed]
    [Google Scholar]
  7. Herren C. D., Mitra A., Palaniyandi S. K., Coleman A., Elankumaran S., Mukhopadhyay S.. ( 2006;). The BarA-UvrY two-component system regulates virulence in avian pathogenic Escherichia coli O78 : K80 : H9. . Infect Immun 74:, 4900–4909. [CrossRef].[PubMed]
    [Google Scholar]
  8. Hsiao A., Liu Z., Joelsson A., Zhu J.. ( 2006;). Vibrio cholerae virulence regulator-coordinated evasion of host immunity. . Proc Natl Acad Sci U S A 103:, 14542–14547. [CrossRef].[PubMed]
    [Google Scholar]
  9. Jobling M. G., Holmes R. K.. ( 1997;). Characterization of hapR, a positive regulator of the Vibrio cholerae HA/protease gene hap, and its identification as a functional homologue of the Vibrio harveyi luxR gene. . Mol Microbiol 26:, 1023–1034. [CrossRef].[PubMed]
    [Google Scholar]
  10. Kovach M. E., Elzer P. H., Hill D. S., Robertson G. T., Farris M. A., Roop R. M. II, Peterson K. M.. ( 1995;). Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. . Gene 166:, 175–176. [CrossRef].[PubMed]
    [Google Scholar]
  11. Lenz D. H., Mok K. C., Lilley B. N., Kulkarni R. V., Wingreen N. S., Bassler B. L.. ( 2004;). The small RNA chaperone Hfq and multiple small RNAs control quorum sensing in Vibrio harveyi and Vibrio cholerae. . Cell 118:, 69–82. [CrossRef].[PubMed]
    [Google Scholar]
  12. Lenz D. H., Miller M. B., Zhu J., Kulkarni R. V., Bassler B. L.. ( 2005;). CsrA and three redundant small RNAs regulate quorum sensing in Vibrio cholerae. . Mol Microbiol 58:, 1186–1202. [CrossRef].[PubMed]
    [Google Scholar]
  13. Liu M. Y., Yang H., Romeo T.. ( 1995;). The product of the pleiotropic Escherichia coli gene csrA modulates glycogen biosynthesis via effects on mRNA stability. . J Bacteriol 177:, 2663–2672.[PubMed]
    [Google Scholar]
  14. Liu M. Y., Gui G., Wei B., Preston J. F. III, Oakford L., Yüksel U., Giedroc D. P., Romeo T.. ( 1997;). The RNA molecule CsrB binds to the global regulatory protein CsrA and antagonizes its activity in Escherichia coli. . J Biol Chem 272:, 17502–17510. [CrossRef].[PubMed]
    [Google Scholar]
  15. Liu Z., Hsiao A., Joelsson A., Zhu J.. ( 2006;). The transcriptional regulator VqmA increases expression of the quorum-sensing activator HapR in Vibrio cholerae. . J Bacteriol 188:, 2446–2453. [CrossRef].[PubMed]
    [Google Scholar]
  16. Liu Z., Miyashiro T., Tsou A., Hsiao A., Goulian M., Zhu J.. ( 2008;). Mucosal penetration primes Vibrio cholerae for host colonization by repressing quorum sensing. . Proc Natl Acad Sci U S A 105:, 9769–9774. [CrossRef].[PubMed]
    [Google Scholar]
  17. Metcalf W. W., Jiang W., Daniels L. L., Kim S. K., Haldimann A., Wanner B. L.. ( 1996;). Conditionally replicative and conjugative plasmids carrying lacZα for cloning, mutagenesis, and allele replacement in bacteria. . Plasmid 35:, 1–13. [CrossRef].[PubMed]
    [Google Scholar]
  18. Miller M. B., Skorupski K., Lenz D. H., Taylor R. K., Bassler B. L.. ( 2002;). Parallel quorum sensing systems converge to regulate virulence in Vibrio cholerae. . Cell 110:, 303–314. [CrossRef].[PubMed]
    [Google Scholar]
  19. Mitrophanov A. Y., Groisman E. A.. ( 2008;). Signal integration in bacterial two-component regulatory systems. . Genes Dev 22:, 2601–2611. [CrossRef].[PubMed]
    [Google Scholar]
  20. Neiditch M. B., Federle M. J., Pompeani A. J., Kelly R. C., Swem D. L., Jeffrey P. D., Bassler B. L., Hughson F. M.. ( 2006;). Ligand-induced asymmetry in histidine sensor kinase complex regulates quorum sensing. . Cell 126:, 1095–1108. [CrossRef].[PubMed]
    [Google Scholar]
  21. Pernestig A. K., Melefors O., Georgellis D.. ( 2001;). Identification of UvrY as the cognate response regulator for the BarA sensor kinase in Escherichia coli. . J Biol Chem 276:, 225–231. [CrossRef].[PubMed]
    [Google Scholar]
  22. Pernestig A. K., Georgellis D., Romeo T., Suzuki K., Tomenius H., Normark S., Melefors O.. ( 2003;). The Escherichia coli BarA-UvrY two-component system is needed for efficient switching between glycolytic and gluconeogenic carbon sources. . J Bacteriol 185:, 843–853. [CrossRef].[PubMed]
    [Google Scholar]
  23. Romeo T., Gong M.. ( 1993;). Genetic and physical mapping of the regulatory gene csrA on the Escherichia coli K-12 chromosome. . J Bacteriol 175:, 5740–5741.[PubMed]
    [Google Scholar]
  24. Romeo T., Gong M., Liu M. Y., Brun-Zinkernagel A. M.. ( 1993;). Identification and molecular characterization of csrA, a pleiotropic gene from Escherichia coli that affects glycogen biosynthesis, gluconeogenesis, cell size, and surface properties. . J Bacteriol 175:, 4744–4755.[PubMed]
    [Google Scholar]
  25. Sabnis N. A., Yang H., Romeo T.. ( 1995;). Pleiotropic regulation of central carbohydrate metabolism in Escherichia coli via the gene csrA. . J Biol Chem 270:, 29096–29104. [CrossRef].[PubMed]
    [Google Scholar]
  26. Svenningsen S. L., Waters C. M., Bassler B. L.. ( 2008;). A negative feedback loop involving small RNAs accelerates Vibrio cholerae’s transition out of quorum-sensing mode. . Genes Dev 22:, 226–238. [CrossRef].[PubMed]
    [Google Scholar]
  27. Tomenius H., Pernestig A. K., Jonas K., Georgellis D., Möllby R., Normark S., Melefors O.. ( 2006;). The Escherichia coli BarA-UvrY two-component system is a virulence determinant in the urinary tract. . BMC Microbiol 6:, 27. [CrossRef].[PubMed]
    [Google Scholar]
  28. Tsou A. M., Cai T., Liu Z., Zhu J., Kulkarni R. V.. ( 2009;). Regulatory targets of quorum sensing in Vibrio cholerae: evidence for two distinct HapR-binding motifs. . Nucleic Acids Res 37:, 2747–2756. [CrossRef].[PubMed]
    [Google Scholar]
  29. Wei B. L., Brun-Zinkernagel A. M., Simecka J. W., Prüss B. M., Babitzke P., Romeo T.. ( 2001;). Positive regulation of motility and flhDC expression by the RNA-binding protein CsrA of Escherichia coli. . Mol Microbiol 40:, 245–256. [CrossRef].[PubMed]
    [Google Scholar]
  30. Weilbacher T., Suzuki K., Dubey A. K., Wang X., Gudapaty S., Morozov I., Baker C. S., Georgellis D., Babitzke P., Romeo T.. ( 2003;). A novel sRNA component of the carbon storage regulatory system of Escherichia coli. . Mol Microbiol 48:, 657–670. [CrossRef].[PubMed]
    [Google Scholar]
  31. Wong S. M., Carroll P. A., Rahme L. G., Ausubel F. M., Calderwood S. B.. ( 1998;). Modulation of expression of the ToxR regulon in Vibrio cholerae by a member of the two-component family of response regulators. . Infect Immun 66:, 5854–5861.[PubMed]
    [Google Scholar]
  32. Zhu J., Mekalanos J. J.. ( 2003;). Quorum sensing-dependent biofilms enhance colonization in Vibrio cholerae. . Dev Cell 5:, 647–656. [CrossRef].[PubMed]
    [Google Scholar]
  33. Zhu J., Miller M. B., Vance R. E., Dziejman M., Bassler B. L., Mekalanos J. J.. ( 2002;). Quorum-sensing regulators control virulence gene expression in Vibrio cholerae. . Proc Natl Acad Sci U S A 99:, 3129–3134. [CrossRef].[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.046235-0
Loading
/content/journal/micro/10.1099/mic.0.046235-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error