1887

Abstract

The operon in Gram-positive bacteria encodes proteins that are necessary for the addition of -alanine to teichoic acids of the cell wall. The addition of -alanine to the cell wall results in a net positive charge on the bacterial cell surface and, as a consequence, can decrease the effectiveness of antimicrobials, such as cationic antimicrobial peptides (CAMPs). Although the roles of the genes have been studied for some Gram-positive organisms, the arrangement of these genes in and the life cycle of the bacterium in the host are markedly different from those of other pathogens. In the current work, we determined the contribution of the putative operon to CAMP resistance. Our data indicate that the operon is necessary for full resistance of to nisin, gallidermin, polymyxin B and vancomycin. We propose that the -alanylation of teichoic acids provides protection against antimicrobial peptides that may be essential for growth of in the host.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.045997-0
2011-05-01
2020-08-10
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/5/1457.html?itemId=/content/journal/micro/10.1099/mic.0.045997-0&mimeType=html&fmt=ahah

References

  1. Abachin E., Poyart C., Pellegrini E., Milohanic E., Fiedler F., Berche P., Trieu-Cuot P.. ( 2002;). Formation of d-alanyl-lipoteichoic acid is required for adhesion and virulence of Listeria monocytogenes. . Mol Microbiol43:1–14 [CrossRef][PubMed]
    [Google Scholar]
  2. Abi Khattar Z., Rejasse A., Destoumieux-Garzón D., Escoubas J. M., Sanchis V., Lereclus D., Givaudan A., Kallassy M., Nielsen-Leroux C., Gaudriault S.. ( 2009;). The dlt operon of Bacillus cereus is required for resistance to cationic antimicrobial peptides and for virulence in insects. J Bacteriol191:7063–7073 [CrossRef][PubMed]
    [Google Scholar]
  3. )Transcriptional regulation of the dlt operon in Enterococcus faecalis and further characterization of a dltA mutant
  4. Bartlett J. G., Onderdonk A. B., Cisneros R. L., Kasper D. L.. ( 1977;). Clindamycin-associated colitis due to a toxin-producing species of Clostridium in hamsters. J Infect Dis136:701–705[PubMed][CrossRef]
    [Google Scholar]
  5. Cao M., Helmann J. D.. ( 2004;). The Bacillus subtilis extracytoplasmic-function σX factor regulates modification of the cell envelope and resistance to cationic antimicrobial peptides. J Bacteriol186:1136–1146 [CrossRef][PubMed]
    [Google Scholar]
  6. Dineen S. S., Villapakkam A. C., Nordman J. T., Sonenshein A. L.. ( 2007;). Repression of Clostridium difficile toxin gene expression by CodY. Mol Microbiol66:206–219 [CrossRef][PubMed]
    [Google Scholar]
  7. Dubberke E. R., Butler A. M., Yokoe D. S., Mayer J., Hota B., Mangino J. E., Khan Y. M., Popovich K. J., Fraser V. J.. ( 2010;). Multicenter study of Clostridium difficile infection rates from 2000 to 2006. Infect Control Hosp Epidemiol10:1030–1037[CrossRef]
    [Google Scholar]
  8. Dunman P. M., Murphy E., Haney S., Palacios D., Tucker-Kellogg G., Wu S., Brown E. L., Zagursky R. J., Shlaes D., Projan S. J.. ( 2001;). Transcription profiling-based identification of Staphylococcus aureus genes regulated by the agr and/or sarA loci. J Bacteriol183:7341–7353 [CrossRef][PubMed]
    [Google Scholar]
  9. Estacio W., Anna-Arriola S. S., Adedipe M., Márquez-Magaña L. M.. ( 1998;). Dual promoters are responsible for transcription initiation of the fla/che operon in Bacillus subtilis. . J Bacteriol180:3548–3555[PubMed]
    [Google Scholar]
  10. Fisher N., Shetron-Rama L., Herring-Palmer A., Heffernan B., Bergman N., Hanna P.. ( 2006;). The dltABCD operon of Bacillus anthracis Sterne is required for virulence and resistance to peptide, enzymatic, and cellular mediators of innate immunity. J Bacteriol188:1301–1309 [CrossRef][PubMed]
    [Google Scholar]
  11. Gudmundsson G. H., Agerberth B.. ( 1999;). Neutrophil antibacterial peptides, multifunctional effector molecules in the mammalian immune system. J Immunol Methods232:45–54 [CrossRef][PubMed]
    [Google Scholar]
  12. Haghjoo E., Galán J. E.. ( 2007;). Identification of a transcriptional regulator that controls intracellular gene expression in Salmonella typhi. . Mol Microbiol64:1549–1561 [CrossRef][PubMed]
    [Google Scholar]
  13. Hammer-Jespersen K., Munch-Petersen A.. ( 1975;). Multiple regulation of nucleoside catabolizing enzymes: regulation of the deo operon by the cytR and deoR gene products. Mol Gen Genet137:327–335 [CrossRef][PubMed]
    [Google Scholar]
  14. Haraldsen J. D., Sonenshein A. L.. ( 2003;). Efficient sporulation in Clostridium difficile requires disruption of the σK gene. Mol Microbiol48:811–821 [CrossRef][PubMed]
    [Google Scholar]
  15. Heap J. T., Pennington O. J., Cartman S. T., Carter G. P., Minton N. P.. ( 2007;). The ClosTron: a universal gene knock-out system for the genus Clostridium. . J Microbiol Methods70:452–464 [CrossRef][PubMed]
    [Google Scholar]
  16. Hyyrylainen H. L., Vitikainen M., Thwaite J., Wu H., Sarvas M., Harwood C. R., Kontinen V. P., Stephenson K.. ( 2000;). d-Alanine substitution of teichoic acids as a modulator of protein folding and stability at the cytoplasmic membrane/cell wall interface of Bacillus subtilis. . J Biol Chem275:26696–26703[PubMed]
    [Google Scholar]
  17. Karberg M., Guo H., Zhong J., Coon R., Perutka J., Lambowitz A. M.. ( 2001;). Group II introns as controllable gene targeting vectors for genetic manipulation of bacteria. Nat Biotechnol19:1162–1167 [CrossRef][PubMed]
    [Google Scholar]
  18. Koprivnjak T., Mlakar V., Swanson L., Fournier B., Peschel A., Weiss J. P.. ( 2006;). Cation-induced transcriptional regulation of the dlt operon of Staphylococcus aureus. . J Bacteriol188:3622–3630 [CrossRef][PubMed]
    [Google Scholar]
  19. Kraus D., Herbert S., Kristian S. A., Khosravi A., Nizet V., Götz F., Peschel A.. ( 2008;). The GraRS regulatory system controls Staphylococcus aureus susceptibility to antimicrobial host defenses. BMC Microbiol8:85 [CrossRef][PubMed]
    [Google Scholar]
  20. Li M., Cha D. J., Lai Y., Villaruz A. E., Sturdevant D. E., Otto M.. ( 2007;a). The antimicrobial peptide-sensing system aps of Staphylococcus aureus. . Mol Microbiol66:1136–1147 [CrossRef][PubMed]
    [Google Scholar]
  21. Li M., Lai Y., Villaruz A. E., Cha D. J., Sturdevant D. E., Otto M.. ( 2007;b). Gram-positive three-component antimicrobial peptide-sensing system. Proc Natl Acad Sci U S A104:9469–9474 [CrossRef][PubMed]
    [Google Scholar]
  22. Luria S. E., Burrous J. W.. ( 1957;). Hybridization between Escherichia coli and Shigella. . J Bacteriol74:461–476[PubMed]
    [Google Scholar]
  23. Mandin P., Fsihi H., Dussurget O., Vergassola M., Milohanic E., Toledo-Arana A., Lasa I., Johansson J., Cossart P.. ( 2005;). VirR, a response regulator critical for Listeria monocytogenes virulence. Mol Microbiol57:1367–1380 [CrossRef][PubMed]
    [Google Scholar]
  24. Manganelli R., Provvedi R., Berneri C., Oggioni M. R., Pozzi G.. ( 1998;). Insertion vectors for construction of recombinant conjugative transposons in Bacillus subtilis and Enterococcus faecalis. . FEMS Microbiol Lett168:259–268 [CrossRef][PubMed]
    [Google Scholar]
  25. McBride S. M., Sonenshein A. L.. ( 2011;). Identification of a genetic locus responsible for antimicrobial peptide resistance in Clostridium difficile. . Infect Immun79:167–176 [CrossRef][PubMed]
    [Google Scholar]
  26. McDonald L. C., Killgore G. E., Thompson A., Owens R. C. Jr, Kazakova S. V., Sambol S. P., Johnson S., Gerding D. N.. ( 2005;). An epidemic, toxin gene-variant strain of Clostridium difficile. . N Engl J Med353:2433–2441 [CrossRef][PubMed]
    [Google Scholar]
  27. Müller C. A., Autenrieth I. B., Peschel A.. ( 2005;). Intestinal epithelial barrier and mucosal immunity. Innate defenses of the intestinal epithelial barrier. Cell Mol Life Sci62:1297–1307 [CrossRef][PubMed]
    [Google Scholar]
  28. Neuhaus F. C., Baddiley J.. ( 2003;). A continuum of anionic charge: structures and functions of d-alanyl-teichoic acids in Gram-positive bacteria. Microbiol Mol Biol Rev67:686–723 [CrossRef][PubMed]
    [Google Scholar]
  29. Nizet V.. ( 2006;). Antimicrobial peptide resistance mechanisms of human bacterial pathogens. Curr Issues Mol Biol8:11–26[PubMed]
    [Google Scholar]
  30. O’Brien J. A., Lahue B. J., Caro J. J., Davidson D. M.. ( 2007;). The emerging infectious challenge of Clostridium difficile-associated disease in Massachusetts hospitals: clinical and economic consequences. Infect Control Hosp Epidemiol28:1219–1227 [CrossRef][PubMed]
    [Google Scholar]
  31. O’Connor J. R., Lyras D., Farrow K. A., Adams V., Powell D. R., Hinds J., Cheung J. K., Rood J. I.. ( 2006;). Construction and analysis of chromosomal Clostridium difficile mutants. Mol Microbiol61:1335–1351 [CrossRef][PubMed]
    [Google Scholar]
  32. Palumbo E., Deghorain M., Cocconcelli P. S., Kleerebezem M., Geyer A., Hartung T., Morath S., Hols P.. ( 2006;). d-Alanyl ester depletion of teichoic acids in Lactobacillus plantarum results in a major modification of lipoteichoic acid composition and cell wall perforations at the septum mediated by the Acm2 autolysin. J Bacteriol188:3709–3715 [CrossRef][PubMed]
    [Google Scholar]
  33. Perego M., Glaser P., Minutello A., Strauch M. A., Leopold K., Fischer W.. ( 1995;). Incorporation of d-alanine into lipoteichoic acid and wall teichoic acid in Bacillus subtilis. Identification of genes and regulation. J Biol Chem270:15598–15606[PubMed][CrossRef]
    [Google Scholar]
  34. Peschel A.. ( 2002;). How do bacteria resist human antimicrobial peptides?. Trends Microbiol10:179–186 [CrossRef][PubMed]
    [Google Scholar]
  35. Poyart C., Lamy M. C., Boumaila C., Fiedler F., Trieu-Cuot P.. ( 2001;). Regulation of d-alanyl-lipoteichoic acid biosynthesis in Streptococcus agalactiae involves a novel two-component regulatory system. J Bacteriol183:6324–6334 [CrossRef][PubMed]
    [Google Scholar]
  36. Saïd-Salim B., Dunman P. M., McAleese F. M., Macapagal D., Murphy E., McNamara P. J., Arvidson S., Foster T. J., Projan S. J., Kreiswirth B. N.. ( 2003;). Global regulation of Staphylococcus aureus genes by Rot. J Bacteriol185:610–619 [CrossRef][PubMed]
    [Google Scholar]
  37. Schmittgen T. D., Livak K. J.. ( 2008;). Analyzing real-time PCR data by the comparative C T method. Nat Protoc3:1101–1108 [CrossRef][PubMed]
    [Google Scholar]
  38. Sebaihia M., Wren B. W., Mullany P., Fairweather N. F., Minton N., Stabler R., Thomson N. R., Roberts A. P., Cerdeño-Tárraga A. M. et al. ( 2006;). The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome. Nat Genet38:779–786 [CrossRef][PubMed]
    [Google Scholar]
  39. Setlow P.. ( 1995;). Mechanisms for the prevention of damage to DNA in spores of Bacillus species. Annu Rev Microbiol49:29–54 [CrossRef][PubMed]
    [Google Scholar]
  40. Smith C. J., Markowitz S. M., Macrina F. L.. ( 1981;). Transferable tetracycline resistance in Clostridium difficile. . Antimicrob Agents Chemother19:997–1003[PubMed][CrossRef]
    [Google Scholar]
  41. Sonenshein A. L., Haraldsen J. D., Dupuy B.. ( 2005;). RNA polymerase and alternative sigma factors. Handbook on Clostridia659–669 Durre P.. Boca Raton, FL: Taylor and Francis;
    [Google Scholar]
  42. Thomas C. M., Smith C. A.. ( 1987;). Incompatibility group P plasmids: genetics, evolution, and use in genetic manipulation. Annu Rev Microbiol41:77–101 [CrossRef][PubMed]
    [Google Scholar]
  43. Vonberg R. P., Kuijper E. J., Wilcox M. H., Barbut F., Tüll P., Gastmeier P., van den Broek P. J., Colville A., Coignard B. et al. ( 2008;). Infection control measures to limit the spread of Clostridium difficile. . Clin Microbiol Infect14:Suppl 52–20 [CrossRef][PubMed]
    [Google Scholar]
  44. Wartha F., Beiter K., Albiger B., Fernebro J., Zychlinsky A., Normark S., Henriques-Normark B.. ( 2007;). Capsule and d-alanylated lipoteichoic acids protect Streptococcus pneumoniae against neutrophil extracellular traps. Cell Microbiol9:1162–1171 [CrossRef][PubMed]
    [Google Scholar]
  45. Weidenmaier C., Peschel A., Kempf V. A., Lucindo N., Yeaman M. R., Bayer A. S.. ( 2005;). DltABCD- and MprF-mediated cell envelope modifications of Staphylococcus aureus confer resistance to platelet microbicidal proteins and contribute to virulence in a rabbit endocarditis model. Infect Immun73:8033–8038 [CrossRef][PubMed]
    [Google Scholar]
  46. Wüst J., Hardegger U.. ( 1983;). Transferable resistance to clindamycin, erythromycin, and tetracycline in Clostridium difficile. . Antimicrob Agents Chemother23:784–786[PubMed][CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.045997-0
Loading
/content/journal/micro/10.1099/mic.0.045997-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error