1887

Abstract

Enteropathogenic (EPEC) is an important cause of infectious diarrhoea. It colonizes human intestinal epithelial cells by delivering effector proteins into the host cell cytoplasm via a type III secretion system (T3SS) encoded within the chromosomal locus of enterocyte effacement (LEE). The LEE pathogenicity island also encodes a lytic transglycosylase (LT) homologue named EtgA. In the present work we investigated the significance of EtgA function in type III secretion (T3S). Purified recombinant EtgA was found to have peptidoglycan lytic activity . Consistent with this function, signal peptide processing and bacterial cell fractionation revealed that EtgA is a periplasmic protein. EtgA possesses the conserved glutamate characteristic of the LT family, and we show here that it is essential for enzymic activity. Overproduction of EtgA in EPEC inhibits bacterial growth and induces cell lysis unless the predicted catalytic glutamate is mutated. An mutant is attenuated for T3S, red blood cell haemolysis and EspA filamentation. BfpH, a plasmid-encoded putative LT, was not able to functionally replace EtgA. Overall, our results indicate that the muramidase activity of EtgA is not critical but makes a significant contribution to the efficiency of the T3S process.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.045617-0
2011-04-01
2020-07-10
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/4/1145.html?itemId=/content/journal/micro/10.1099/mic.0.045617-0&mimeType=html&fmt=ahah

References

  1. Allaoui A., Ménard R., Sansonetti P. J., Parsot C.. 1993; Characterization of the Shigella flexneri ipgD and ipgF genes, which are located in the proximal part of the mxi locus. Infect Immun61:1707–1714
    [Google Scholar]
  2. Anantha R. P., Stone K. D., Donnenberg M. S.. 2000; Effects of bfp mutations on biogenesis of functional enteropathogenic Escherichia coli type IV pili. J Bacteriol182:2498–2506
    [Google Scholar]
  3. Andrade A., Pardo J. P., Espinosa N., Pérez-Hernández G., González-Pedrajo B.. 2007; Enzymatic characterization of the enteropathogenic Escherichia coli type III secretion ATPase EscN. Arch Biochem Biophys468:121–127
    [Google Scholar]
  4. Bayer M., Iberer R., Bischof K., Rassi E., Stabentheiner E., Zellnig G., Koraimann G.. 2001; Functional and mutational analysis of p19, a DNA transfer protein with muramidase activity. J Bacteriol183:3176–3183
    [Google Scholar]
  5. Bendtsen J. D., Nielsen H., von Heijne G., Brunak S.. 2004; Improved prediction of signal peptides: SignalP 3.0. J Mol Biol340:783–795
    [Google Scholar]
  6. Bernadsky G., Beveridge T. J., Clarke A. J.. 1994; Analysis of the sodium dodecyl sulfate-stable peptidoglycan autolysins of select Gram-negative pathogens by using renaturing polyacrylamide gel electrophoresis. J Bacteriol176:5225–5232
    [Google Scholar]
  7. Blackburn N. T., Clarke A. J.. 2001; Identification of four families of peptidoglycan lytic transglycosylases. J Mol Evol52:78–84
    [Google Scholar]
  8. Blocker A., Jouihri N., Larquet E., Gounon P., Ebel F., Parsot C., Sansonetti P., Allaoui A.. 2001; Structure and composition of the Shigella flexneri “needle complex”, a part of its type III secreton. Mol Microbiol39:652–663
    [Google Scholar]
  9. Blocker A., Komoriya K., Aizawa S.. 2003; Type III secretion systems and bacterial flagella: insights into their function from structural similarities. Proc Natl Acad Sci U S A100:3027–3030
    [Google Scholar]
  10. Bustamante V. H., Santana F. J., Calva E., Puente J. L.. 2001; Transcriptional regulation of type III secretion genes in enteropathogenic Escherichia coli : Ler antagonizes H-NS-dependent repression. Mol Microbiol39:664–678
    [Google Scholar]
  11. Chen H. D., Frankel G.. 2005; Enteropathogenic Escherichia coli : unravelling pathogenesis. FEMS Microbiol Rev29:83–98
    [Google Scholar]
  12. Clarke S. C., Haigh R. D., Freestone P. P., Williams P. H.. 2003; Virulence of enteropathogenic Escherichia coli , a global pathogen. Clin Microbiol Rev16:365–378
    [Google Scholar]
  13. Clarke C. A., Scheurwater E. M., Clarke A. J.. 2010; The vertebrate lysozyme inhibitor Ivy functions to inhibit the activity of lytic transglycosylase. J Biol Chem285:14843–14847
    [Google Scholar]
  14. Cornelis G. R.. 2006; The type III secretion injectisome. Nat Rev Microbiol4:811–825
    [Google Scholar]
  15. Creasey E. A., Delahay R. M., Daniell S. J., Frankel G.. 2003; Yeast two-hybrid system survey of interactions between LEE-encoded proteins of enteropathogenic Escherichia coli . Microbiology149:2093–2106
    [Google Scholar]
  16. Daniell S. J., Takahashi N., Wilson R., Friedberg D., Rosenshine I., Booy F. P., Shaw R. K., Knutton S., Frankel G., Aizawa S.. 2001; The filamentous type III secretion translocon of enteropathogenic Escherichia coli . Cell Microbiol3:865–871
    [Google Scholar]
  17. Daniell S. J., Kocsis E., Morris E., Knutton S., Booy F. P., Frankel G.. 2003; 3D structure of EspA filaments from enteropathogenic Escherichia coli . Mol Microbiol49:301–308
    [Google Scholar]
  18. Datsenko K. A., Wanner B. L.. 2000; One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A97:6640–6645
    [Google Scholar]
  19. Davis A. J., De Jesús Díaz D. A., Mecsas J.. 2010; A dominant-negative needle mutant blocks type III secretion of early but not late substrates in Yersinia . Mol Microbiol76:236–259
    [Google Scholar]
  20. Dean P., Kenny B.. 2009; The effector repertoire of enteropathogenic E. coli : ganging up on the host cell. Curr Opin Microbiol12:101–109
    [Google Scholar]
  21. de la Mora J., Ballado T., González-Pedrajo B., Camarena L., Dreyfus G.. 2007; The flagellar muramidase from the photosynthetic bacterium Rhodobacter sphaeroides . J Bacteriol189:7998–8004
    [Google Scholar]
  22. Deng W., Puente J. L., Gruenheid S., Li Y., Vallance B. A., Vázquez A., Barba J., Ibarra J. A., O'Donnell P.. other authors 2004; Dissecting virulence: systematic and functional analyses of a pathogenicity island. Proc Natl Acad Sci U S A101:3597–3602
    [Google Scholar]
  23. Dijkstra A. J., Keck W.. 1996; Peptidoglycan as a barrier to transenvelope transport. J Bacteriol178:5555–5562
    [Google Scholar]
  24. Galán J. E., Wolf-Watz H.. 2006; Protein delivery into eukaryotic cells by type III secretion machines. Nature444:567–573
    [Google Scholar]
  25. García-Angulo V. A., Deng W., Thomas N. A., Finlay B. B., Puente J. L.. 2008; Regulation of expression and secretion of NleH, a new non-locus of enterocyte effacement-encoded effector in Citrobacter rodentium . J Bacteriol190:2388–2399
    [Google Scholar]
  26. Gauthier A., Finlay B. B.. 2003; Translocated intimin receptor and its chaperone interact with ATPase of the type III secretion apparatus of enteropathogenic Escherichia coli . J Bacteriol185:6747–6755
    [Google Scholar]
  27. Gauthier A., Puente J. L., Finlay B. B.. 2003; Secretin of the enteropathogenic Escherichia coli type III secretion system requires components of the type III apparatus for assembly and localization. Infect Immun71:3310–3319
    [Google Scholar]
  28. Genin S., Boucher C. A.. 1994; A superfamily of proteins involved in different secretion pathways in Gram-negative bacteria: modular structure and specificity of the N-terminal domain. Mol Gen Genet243:112–118
    [Google Scholar]
  29. Girón J. A., Ho A. S., Schoolnik G. K.. 1991; An inducible bundle-forming pilus of enteropathogenic Escherichia coli . Science254:710–713
    [Google Scholar]
  30. Gómez-Duarte O. G., Kaper J. B.. 1995; A plasmid-encoded regulatory region activates chromosomal eaeA expression in enteropathogenic Escherichia coli . Infect Immun63:1767–1776
    [Google Scholar]
  31. Harlow E., Lane D.. 1988; Antibodies: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  32. Hirano T., Minamino T., Macnab R. M.. 2001; The role in flagellar rod assembly of the N-terminal domain of Salmonella FlgJ, a flagellum-specific muramidase. J Mol Biol312:359–369
    [Google Scholar]
  33. Höppner C., Liu Z., Domke N., Binns A. N., Baron C.. 2004; VirB1 orthologs from Brucella suis and pKM101 complement defects of the lytic transglycosylase required for efficient type IV secretion from Agrobacterium tumefaciens . J Bacteriol186:1415–1422
    [Google Scholar]
  34. Höppner C., Carle A., Sivanesan D., Hoeppner S., Baron C.. 2005; The putative lytic transglycosylase VirB1 from Brucella suis interacts with the type IV secretion system core components VirB8, VirB9 and VirB11. Microbiology151:3469–3482
    [Google Scholar]
  35. Hueck C. J.. 1998; Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev62:379–433
    [Google Scholar]
  36. Ide T., Laarmann S., Greune L., Schillers H., Oberleithner H., Schmidt M. A.. 2001; Characterization of translocation pores inserted into plasma membranes by type III-secreted Esp proteins of enteropathogenic Escherichia coli . Cell Microbiol3:669–679
    [Google Scholar]
  37. Jarvis K. G., Girón J. A., Jerse A. E., McDaniel T. K., Donnenberg M. S., Kaper J. B.. 1995; Enteropathogenic Escherichia coli contains a putative type III secretion system necessary for the export of proteins involved in attaching and effacing lesion formation. Proc Natl Acad Sci U S A92:7996–8000
    [Google Scholar]
  38. Kenny B., Finlay B. B.. 1995; Protein secretion by enteropathogenic Escherichia coli is essential for transducing signals to epithelial cells. Proc Natl Acad Sci U S A92:7991–7995
    [Google Scholar]
  39. Kenny B., Abe A., Stein M., Finlay B. B.. 1997a; Enteropathogenic Escherichia coli protein secretion is induced in response to conditions similar to those in the gastrointestinal tract. Infect Immun65:2606–2612
    [Google Scholar]
  40. Kenny B., DeVinney R., Stein M., Reinscheid D. J., Frey E. A., Finlay B. B.. 1997b; Enteropathogenic E. coli (EPEC) transfers its receptor for intimate adherence into mammalian cells. Cell91:511–520
    [Google Scholar]
  41. Knutton S., Lloyd D. R., McNeish A. S.. 1987; Adhesion of enteropathogenic Escherichia coli to human intestinal enterocytes and cultured human intestinal mucosa. Infect Immun55:69–77
    [Google Scholar]
  42. Knutton S., Rosenshine I., Pallen M. J., Nisan I., Neves B. C., Bain C., Wolff C., Dougan G., Frankel G.. 1998; A novel EspA-associated surface organelle of enteropathogenic Escherichia coli involved in protein translocation into epithelial cells. EMBO J17:2166–2176
    [Google Scholar]
  43. Kohler P. L., Hamilton H. L., Cloud-Hansen K., Dillard J. P.. 2007; AtlA functions as a peptidoglycan lytic transglycosylase in the Neisseria gonorrhoeae type IV secretion system. J Bacteriol189:5421–5428
    [Google Scholar]
  44. Koraimann G.. 2003; Lytic transglycosylases in macromolecular transport systems of Gram-negative bacteria. Cell Mol Life Sci60:2371–2388
    [Google Scholar]
  45. Kubori T., Matsushima Y., Nakamura D., Uralil J., Lara-Tejero M., Sukhan A., Galán J. E., Aizawa S. I.. 1998; Supramolecular structure of the Salmonella typhimurium type III protein secretion system. Science280:602–605
    [Google Scholar]
  46. Levine M. M., Bergquist E. J., Nalin D. R., Waterman D. H., Hornick R. B., Young C. R., Sotman S.. 1978; Escherichia coli strains that cause diarrhoea but do not produce heat-labile or heat-stable enterotoxins and are non-invasive. Lancet311:1119–1122
    [Google Scholar]
  47. MacRitchie D. M., Ward J. D., Nevesinjac A. Z., Raivio T. L.. 2008; Activation of the Cpx envelope stress response down-regulates expression of several locus of enterocyte effacement-encoded genes in enteropathogenic Escherichia coli . Infect Immun76:1465–1475
    [Google Scholar]
  48. McDaniel T. K., Kaper J. B.. 1997; A cloned pathogenicity island from enteropathogenic Escherichia coli confers the attaching and effacing phenotype on E. coli K-12. Mol Microbiol23:399–407
    [Google Scholar]
  49. McDaniel T. K., Jarvis K. G., Donnenberg M. S., Kaper J. B.. 1995; A genetic locus of enterocyte effacement conserved among diverse enterobacterial pathogens. Proc Natl Acad Sci U S A92:1664–1668
    [Google Scholar]
  50. Mellies J. L., Elliott S. J., Sperandio V., Donnenberg M. S., Kaper J. B.. 1999; The Per regulon of enteropathogenic Escherichia coli : identification of a regulatory cascade and a novel transcriptional activator, the locus of enterocyte effacement (LEE)-encoded regulator (Ler. Mol Microbiol33:296–306
    [Google Scholar]
  51. Mellies J. L., Barron A. M., Carmona A. M.. 2007; Enteropathogenic and enterohemorrhagic Escherichia coli virulence gene regulation. Infect Immun75:4199–4210
    [Google Scholar]
  52. Moon H. W., Whipp S. C., Argenzio R. A., Levine M. M., Giannella R. A.. 1983; Attaching and effacing activities of rabbit and human enteropathogenic Escherichia coli in pig and rabbit intestines. Infect Immun41:1340–1351
    [Google Scholar]
  53. Mueller C. A., Broz P., Müller S. A., Ringler P., Erne-Brand F., Sorg I., Kuhn M., Engel A., Cornelis G. R.. 2005; The V-antigen of Yersinia forms a distinct structure at the tip of injectisome needles. Science310:674–676
    [Google Scholar]
  54. Mueller C. A., Broz P., Cornelis G. R.. 2008; The type III secretion system tip complex and translocon. Mol Microbiol68:1085–1095
    [Google Scholar]
  55. Nambu T., Minamino T., Macnab R. M., Kutsukake K.. 1999; Peptidoglycan-hydrolyzing activity of the FlgJ protein, essential for flagellar rod formation in Salmonella typhimurium . J Bacteriol181:1555–1561
    [Google Scholar]
  56. Nataro J. P., Kaper J. B.. 1998; Diarrheagenic Escherichia coli . Clin Microbiol Rev11:142–201
    [Google Scholar]
  57. Ogino T., Ohno R., Sekiya K., Kuwae A., Matsuzawa T., Nonaka T., Fukuda H., Imajoh-Ohmi S., Abe A.. 2006; Assembly of the type III secretion apparatus of enteropathogenic Escherichia coli . J Bacteriol188:2801–2811
    [Google Scholar]
  58. Oh H. S., Kvitko B. H., Morello J. E., Collmer A.. 2007; Pseudomonas syringae lytic transglycosylases coregulated with the type III secretion system contribute to the translocation of effector proteins into plant cells. J Bacteriol189:8277–8289
    [Google Scholar]
  59. Ohnishi K., Fan F., Schoenhals G. J., Kihara M., Macnab R. M.. 1997; The FliO, FliP, FliQ, and FliR proteins of Salmonella typhimurium : putative components for flagellar assembly. J Bacteriol179:6092–6099
    [Google Scholar]
  60. Pallen M. J., Beatson S. A., Bailey C. M.. 2005; Bioinformatics analysis of the locus for enterocyte effacement provides novel insights into type-III secretion. BMC Microbiol5:9
    [Google Scholar]
  61. Paradis-Bleau C., Cloutier I., Lemieux L., Sanschagrin F., Laroche J., Auger M., Garnier A., Levesque R. C.. 2007; Peptidoglycan lytic activity of the Pseudomonas aeruginosa phage phiKZ gp144 lytic transglycosylase. FEMS Microbiol Lett266:201–209
    [Google Scholar]
  62. Park J. T., Uehara T.. 2008; How bacteria consume their own exoskeletons (turnover and recycling of cell wall peptidoglycan. Microbiol Mol Biol Rev72:211–227
    [Google Scholar]
  63. Porter M. E., Mitchell P., Roe A. J., Free A., Smith D. G., Gally D. L.. 2004; Direct and indirect transcriptional activation of virulence genes by an AraC-like protein, PerA from enteropathogenic Escherichia coli . Mol Microbiol54:1117–1133
    [Google Scholar]
  64. Pucciarelli M. G., García-del Portillo F.. 2003; Protein–peptidoglycan interactions modulate the assembly of the needle complex in the Salmonella invasion-associated type III secretion system. Mol Microbiol48:573–585
    [Google Scholar]
  65. Pugsley A. P.. 1993; The complete general secretory pathway in Gram-negative bacteria. Microbiol Rev57:50–108
    [Google Scholar]
  66. Rosenshine I., Ruschkowski S., Stein M., Reinscheid D. J., Mills S. D., Finlay B. B.. 1996; A pathogenic bacterium triggers epithelial signals to form a functional bacterial receptor that mediates actin pseudopod formation. EMBO J15:2613–2624
    [Google Scholar]
  67. Sambrook J., Russell D. W.. 2001; Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  68. Scheurwater E., Reid C. W., Clarke A. J.. 2008; Lytic transglycosylases: bacterial space-making autolysins. Int J Biochem Cell Biol40:586–591
    [Google Scholar]
  69. Sekiya K., Ohishi M., Ogino T., Tamano K., Sasakawa C., Abe A.. 2001; Supermolecular structure of the enteropathogenic Escherichia coli type III secretion system and its direct interaction with the EspA-sheath-like structure. Proc Natl Acad Sci U S A98:11638–11643
    [Google Scholar]
  70. Thomas N. A., Deng W., Puente J. L., Frey E. A., Yip C. K., Strynadka N. C., Finlay B. B.. 2005; CesT is a multi-effector chaperone and recruitment factor required for the efficient type III secretion of both LEE- and non-LEE-encoded effectors of enteropathogenic Escherichia coli . Mol Microbiol57:1762–1779
    [Google Scholar]
  71. Thunnissen A.-M. W. H., Dijkstra A. J., Kalk K. H., Rozeboom H. J., Engel H., Keck W., Dijkstra B. W.. 1994; Doughnut-shaped structure of a bacterial muramidase revealed by X-ray crystallography. Nature367:750–753
    [Google Scholar]
  72. Trevor F. M., Spreter T., Strynadka N. C.. 2007; Piecing together the type III injectisome of bacterial pathogens. Curr Opin Struct Biol18:1–9
    [Google Scholar]
  73. van Asselt E. J., Kalk K. H., Dijkstra B. W.. 2000; Crystallographic studies of the interactions of Escherichia coli lytic transglycosylase Slt35 with peptidoglycan. Biochemistry39:1924–1934
    [Google Scholar]
  74. Viollier P. H., Shapiro L.. 2003; A lytic transglycosylase homologue, PleA, is required for the assembly of pili and the flagellum at the Caulobacter crescentus cell pole. Mol Microbiol49:331–345
    [Google Scholar]
  75. Wang D., Roe A. J., McAteer S., Shipston M. J., Gally D. L.. 2008; Hierarchal type III secretion of translocators and effectors from Escherichia coli O157 : H7 requires the carboxy terminus of SepL that binds to Tir. Mol Microbiol69:1499–1512
    [Google Scholar]
  76. Warawa J., Finlay B. B., Kenny B.. 1999; Type III secretion-dependent hemolytic activity of enteropathogenic Escherichia coli . Infect Immun67:5538–5540
    [Google Scholar]
  77. Yip C. K., Kimbrough T. G., Felise H. B., Vuckovic M., Thomas N. A., Pfuetzner R. A., Frey E. A., Finlay B. B., Miller S. I., Strynadka N. C.. 2005; Structural characterization of the molecular platform for type III secretion system assembly. Nature435:702–707
    [Google Scholar]
  78. Yu Y. C., Lin C. N., Wang S. H., Ng S. C., Hu W. S., Syu W. J.. 2010; A putative lytic transglycosylase tightly regulated and critical for the EHEC type three secretion. J Biomed Sci17:52
    [Google Scholar]
  79. Zahrl D., Wagner M., Bischof K., Bayer M., Zavecz B., Beranek A., Ruckenstuhl C., Zarfel G. E., Koraimann G.. 2005; Peptidoglycan degradation by specialized lytic transglycosylases associated with type III and type IV secretion systems. Microbiology151:3455–3467
    [Google Scholar]
  80. Zarivach R., Vuckovic M., Deng W., Finlay B. B., Strynadka N. C.. 2007; Structural analysis of a prototypical ATPase from the type III secretion system. Nat Struct Mol Biol14:131–137
    [Google Scholar]
  81. Zupan J., Hackworth C. A., Aguilar J., Ward D., Zambryski P.. 2007; VirB1* promotes T-pilus formation in the vir -type IV secretion system of Agrobacterium tumefaciens . J Bacteriol189:6551–6563
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.045617-0
Loading
/content/journal/micro/10.1099/mic.0.045617-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error