1887

Abstract

The operon encodes a toxin–antitoxin (TA) pair, Axe–Txe, that was initially identified on the multidrug-resistance plasmid pRUM in . In , expression of the Txe toxin is known to inhibit cell growth, and co-expression of the antitoxin, Axe, counteracts the toxic effect of Txe. Here, we report the nucleotide sequence of pS177, a 39 kb multidrug-resistant plasmid isolated from vancomycin-resistant , which harbours the operon and the gene cluster. RT-PCR analysis revealed that the transcript is produced by strain S177 as well as by other vancomycin-resistant enteroccoci. Moreover, we determine the mechanism by which the Txe protein exerts its toxic activity. Txe inhibits protein synthesis in without affecting DNA or RNA synthesis, and inhibits protein synthesis in a cell-free system. Using primer extension analysis, we demonstrate that Txe preferentially cleaves single-stranded mRNA at the first base after an AUG start codon. We conclude that Txe is an endoribonuclease which cleaves mRNA and inhibits protein synthesis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.045492-0
2011-02-01
2020-08-11
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/2/387.html?itemId=/content/journal/micro/10.1099/mic.0.045492-0&mimeType=html&fmt=ahah

References

  1. Aizenman E., Engelberg-Kulka H., Glaser G.. 1996; An Escherichia coli chromosomal “addiction module” regulated by guanosine [corrected] 3′,5′-bispyrophosphate: a model for programmed bacterial cell death. Proc Natl Acad Sci U S A93:6059–6063
    [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J.. 1990; Basic local alignment search tool. J Mol Biol215:403–410
    [Google Scholar]
  3. Anantharaman V., Aravind L.. 2003; New connections in the prokaryotic toxin-antitoxin network: relationship with the eukaryotic nonsense-mediated RNA decay system. Genome Biol4:R81
    [Google Scholar]
  4. Baldassarri L., Bertuccini L., Creti R., Orefici G., Dicuonzo G., Gherardi G., Venditti M., Di Rosa R.. 2005; Clonality among Enterococcus faecium clinical isolates. Microb Drug Resist11:141–145
    [Google Scholar]
  5. Bernard P., Couturier M.. 1992; Cell killing by the F plasmid CcdB protein involves poisoning of DNA-topoisomerase II complexes. J Mol Biol226:735–745
    [Google Scholar]
  6. Boerlin P., Burnens A. P., Frey J., Kuhnert P., Nicolet J.. 2001; Molecular epidemiology and genetic linkage of macrolide and aminoglycoside resistance in Staphylococcus intermedius of canine origin. Vet Microbiol79:155–169
    [Google Scholar]
  7. Buts L., Lah J., Dao-Thi M. H., Wyns L., Loris R.. 2005; Toxin-antitoxin modules as bacterial metabolic stress managers. Trends Biochem Sci30:672–679
    [Google Scholar]
  8. Camargo I. L., Del Peloso P. F., Da Costa Leite C. F., Goldman G. H., Darini A. L.. 2004; Identification of an unusual VanA element in glycopeptide-resistant Enterococcus faecium in Brazil following international transfer of a bone marrow transplant patient. Can J Microbiol50:767–770
    [Google Scholar]
  9. Christensen S. K., Gerdes K.. 2003; RelE toxins from bacteria and Archaea cleave mRNAs on translating ribosomes, which are rescued by tmRNA. Mol Microbiol48:1389–1400
    [Google Scholar]
  10. Christensen S. K., Mikkelsen M., Pedersen K., Gerdes K.. 2001; RelE, a global inhibitor of translation, is activated during nutritional stress. Proc Natl Acad Sci U S A98:14328–14333
    [Google Scholar]
  11. Christensen S. K., Pedersen K., Hansen F. G., Gerdes K.. 2003; Toxin-antitoxin loci as stress-response-elements: ChpAK/MazF and ChpBK cleave translated RNAs and are counteracted by tmRNA. J Mol Biol332:809–819
    [Google Scholar]
  12. Christensen-Dalsgaard M., Gerdes K.. 2008; Translation affects YoeB and MazF messenger RNA interferase activities by different mechanisms. Nucleic Acids Res36:6472–6481
    [Google Scholar]
  13. Christensen-Dalsgaard M., Overgaard M., Winther K. S., Gerdes K.. 2008; RNA decay by messenger RNA interferases. Methods Enzymol447:521–535
    [Google Scholar]
  14. DeNap J. C., Hergenrother P. J.. 2005; Bacterial death comes full circle: targeting plasmid replication in drug-resistant bacteria. Org Biomol Chem3:959–966
    [Google Scholar]
  15. Deshpande L. M., Fritsche T. R., Moet G. J., Biedenbach D. J., Jones R. N.. 2007; Antimicrobial resistance and molecular epidemiology of vancomycin-resistant enterococci from North America and Europe: a report from the SENTRY antimicrobial surveillance program. Diagn Microbiol Infect Dis58:163–170
    [Google Scholar]
  16. Dowzicky M. J., Park C. H.. 2008; Update on antimicrobial susceptibility rates among gram-negative and Gram-positive organisms in the United States: results from the Tigecycline Evaluation and Surveillance Trial (TEST) 2005 to 2007. Clin Ther30:2040–2050
    [Google Scholar]
  17. Engelberg-Kulka H., Glaser G.. 1999; Addiction modules and programmed cell death and antideath in bacterial cultures. Annu Rev Microbiol53:43–70
    [Google Scholar]
  18. Engelberg-Kulka H., Sat B., Reches M., Amitai S., Hazan R.. 2004; Bacterial programmed cell death systems as targets for antibiotics. Trends Microbiol12:66–71
    [Google Scholar]
  19. Fico S., Mahillon J.. 2006; TasA-tasB, a new putative toxin-antitoxin (TA) system from Bacillus thuringiensis pGI1 plasmid is a widely distributed composite mazE-doc TA system. BMC Genomics7:259
    [Google Scholar]
  20. Francuski D., Saenger W.. 2009; Crystal structure of the antitoxin-toxin protein complex RelB-RelE from Methanococcus jannaschii . J Mol Biol393:898–908
    [Google Scholar]
  21. Garcia-Migura L., Liebana E., Jensen L. B., Barnes S., Pleydell E.. 2007; A longitudinal study to assess the persistence of vancomycin-resistant Enterococcus faecium (VREF) on an intensive broiler farm in the United Kingdom. FEMS Microbiol Lett275:319–325
    [Google Scholar]
  22. Gerdes K., Rasmussen P. B., Molin S.. 1986; Unique type of plasmid maintenance function: postsegregational killing of plasmid-free cells. Proc Natl Acad Sci U S A83:3116–3120
    [Google Scholar]
  23. Gotfredsen M., Gerdes K.. 1998; The Escherichia coli relBE genes belong to a new toxin-antitoxin gene family. Mol Microbiol29:1065–1076
    [Google Scholar]
  24. Grady R., Hayes F.. 2003; Axe-Txe, a broad-spectrum proteic toxin-antitoxin system specified by a multidrug-resistant, clinical isolate of Enterococcus faecium . Mol Microbiol47:1419–1432
    [Google Scholar]
  25. Guardabassi L., Dalsgaard A.. 2004; Occurrence, structure, and mobility of Tn1546-like elements in environmental isolates of vancomycin-resistant enterococci. Appl Environ Microbiol70:984–990
    [Google Scholar]
  26. Handwerger S., Skoble J.. 1995; Identification of chromosomal mobile element conferring high-level vancomycin resistance in Enterococcus faecium . Antimicrob Agents Chemother39:2446–2453
    [Google Scholar]
  27. Handwerger S., Skoble J., Discotto L. F., Pucci M. J.. 1995; Heterogeneity of the vanA gene cluster in clinical isolates of enterococci from the northeastern United States. Antimicrob Agents Chemother39:362–368
    [Google Scholar]
  28. Hayes F.. 2003; Toxins-antitoxins: plasmid maintenance, programmed cell death, and cell cycle arrest. Science301:1496–1499
    [Google Scholar]
  29. Hidron A. I., Edwards J. R., Patel J., Horan T. C., Sievert D. M., Pollock D. A., Fridkin S. K.. 2008; NHSN annual update: antimicrobial-resistant pathogens associated with healthcare-associated infections: annual summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006–2007. Infect Control Hosp Epidemiol29:996–1011
    [Google Scholar]
  30. Jiang Y., Pogliano J., Helinski D. R., Konieczny I.. 2002; ParE toxin encoded by the broad-host-range plasmid RK2 is an inhibitor of Escherichia coli gyrase. Mol Microbiol44:971–979
    [Google Scholar]
  31. JMI 2009; Susceptibility of Gram-positive pathogens.
    [Google Scholar]
  32. Kamada K., Hanaoka F.. 2005; Conformational change in the catalytic site of the ribonuclease YoeB toxin by YefM antitoxin. Mol Cell19:497–510
    [Google Scholar]
  33. Kitami Y., Hiwada K.. 1999; Vascular disease: molecular biology and gene therapy protocols. In Methods in Molecular Medicine pp133–142 Edited by Baker A. H.. Bristol: Bristol Heart Institute, University of Bristol;
    [Google Scholar]
  34. Low D. E., Keller N., Barth A., Jones R. N.. 2001; Clinical prevalence, antimicrobial susceptibility, and geographic resistance patterns of enterococci: results from the SENTRY Antimicrobial Surveillance Program, 1997–1999. Clin Infect Dis32:Suppl. 2S133–S145
    [Google Scholar]
  35. Makarova K. S., Wolf Y. I., Koonin E. V.. 2009; Comprehensive comparative-genomic analysis of type 2 toxin-antitoxin systems and related mobile stress response systems in prokaryotes. Biol Direct4:19
    [Google Scholar]
  36. Miallau L., Faller M., Chiang J., Arbing M., Guo F., Cascio D., Eisenberg D.. 2009; Structure and proposed activity of a member of the VapBC family of toxin-antitoxin systems. VapBC-5 from Mycobacterium tuberculosis . J Biol Chem284:276–283
    [Google Scholar]
  37. Moritz E. M., Hergenrother P. J.. 2007a; Toxin-antitoxin systems are ubiquitous and plasmid-encoded in vancomycin-resistant enterococci. Proc Natl Acad Sci U S A104:311–316
    [Google Scholar]
  38. Moritz E. M., Hergenrother P. J.. 2007b; The prevalence of plasmids and other mobile genetic elements in clinically important drug-resistant bacteria. In Antimicrobial Resistance in Bacteria pp25–53 Edited by Amabile-Ceuvas C. F.. Norwich: Horizon Scientific Press;
    [Google Scholar]
  39. Ogura T., Hiraga S.. 1983; Mini-F plasmid genes that couple host cell division to plasmid proliferation. Proc Natl Acad Sci U S A80:4784–4788
    [Google Scholar]
  40. Owens C. D., Stoessel K.. 2008; Surgical site infections: epidemiology, microbiology and prevention. J Hosp Infect70:Suppl. 23–10
    [Google Scholar]
  41. Pandey D. P., Gerdes K.. 2005; Toxin-antitoxin loci are highly abundant in free-living but lost from host-associated prokaryotes. Nucleic Acids Res33:966–976
    [Google Scholar]
  42. Pedersen K., Zavialov A. V., Pavlov M. Y., Elf J., Gerdes K., Ehrenberg M.. 2003; The bacterial toxin RelE displays codon-specific cleavage of mRNAs in the ribosomal A site. Cell112:131–140
    [Google Scholar]
  43. Richards M. J., Edwards J. R., Culver D. H., Gaynes R. P.. 2000; Nosocomial infections in combined medical-surgical intensive care units in the United States. Infect Control Hosp Epidemiol21:510–515
    [Google Scholar]
  44. Rosvoll T. C., Pedersen T., Sletvold H., Johnsen P. J., Sollid J. E., Simonsen G. S., Jensen L. B., Nielsen K. M., Sundsfjord A.. 2010; PCR-based plasmid typing in Enterococcus faecium strains reveals widely distributed pRE25-, pRUM-, pIP501- and pHTbeta-related replicons associated with glycopeptide resistance and stabilizing toxin-antitoxin systems. FEMS Immunol Med Microbiol58:254–268
    [Google Scholar]
  45. Sader H. S., Jones R. N.. 2009; Antimicrobial susceptibility of Gram-positive bacteria isolated from US medical centers: results of the Daptomycin Surveillance Program (2007–2008. Diagn Microbiol Infect Dis65:158–162
    [Google Scholar]
  46. Sambrook J., Russell D. W.. 2001; Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  47. Schwarz F. V., Perreten V., Teuber M.. 2001; Sequence of the 50-kb conjugative multiresistance plasmid pRE25 from Enterococcus faecalis RE25. Plasmid46:170–187
    [Google Scholar]
  48. Sletvold H., Johnsen P. J., Simonsen G. S., Aasnaes B., Sundsfjord A., Nielsen K. M.. 2007; Comparative DNA analysis of two vanA plasmids from Enterococcus faecium strains isolated from poultry and a poultry farmer in Norway. Antimicrob Agents Chemother51:736–739
    [Google Scholar]
  49. Sletvold H., Johnsen P. J., Hamre I., Simonsen G. S., Sundsfjord A., Nielsen K. M.. 2008; Complete sequence of Enterococcus faecium pVEF3 and the detection of an omega-epsilon-zeta toxin-antitoxin module and an ABC transporter. Plasmid60:75–85
    [Google Scholar]
  50. Strong S. J., Ohta Y., Litman G. W., Amemiya C. T.. 1997; Marked improvement of PAC and BAC cloning is achieved using electroelution of pulsed-field gel-separated partial digests of genomic DNA. Nucleic Acids Res25:3959–3961
    [Google Scholar]
  51. Van Melderen L.. 2002; Molecular interactions of the CcdB poison with its bacterial target, the DNA gyrase. Int J Med Microbiol291:537–544
    [Google Scholar]
  52. Werner G., Coque T. M., Hammerum A. M., Hope R., Hryniewicz W., Johnson A., Klare I., Kristinsson K. G., Leclercq R.. other authors 2008; Emergence and spread of vancomycin resistance among enterococci in Europe. Euro Surveill13:19046
    [Google Scholar]
  53. Williams J. J., Hergenrother P. J.. 2008; Exposing plasmids as the Achilles’ heel of drug-resistant bacteria. Curr Opin Chem Biol12:389–399
    [Google Scholar]
  54. Yoshizumi S., Zhang Y., Yamaguchi Y., Chen L., Kreiswirth B. N., Inouye M.. 2009; Staphylococcus aureus YoeB homologues inhibit translation initiation. J Bacteriol191:5868–5872
    [Google Scholar]
  55. Zhang Y., Inouye M.. 2009; The inhibitory mechanism of protein synthesis by YoeB, an Escherichia coli toxin. J Biol Chem284:6627–6638
    [Google Scholar]
  56. Zhang J., Zhang Y., Zhu L., Suzuki M., Inouye M.. 2004; Interference of mRNA function by sequence-specific endoribonuclease PemK. J Biol Chem279:20678–20684
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.045492-0
Loading
/content/journal/micro/10.1099/mic.0.045492-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error