1887

Abstract

Formation of the segrosome, a nucleoprotein complex crucial for proper functioning of plasmid partition systems, involves interactions between specific partition proteins (ParA-like and ParB-like), ATP and specific DNA sequences (the centromeric sites). Although partition systems have been studied for many years, details of the segrosome formation are not yet clear. Organization of the pSM19035-encoded partition system is unique; in contrast with other known systems, here, the and genes do not constitute an operon. Moreover, Omega [a ParB-like protein which has a Ribbon-Helix-Helix (RHH) structure] recognizes multiple centromeric sequences located in the promoters of , and (copy-number control gene). The ParA-like protein Delta is a Walker-type ATPase. In this work, we identify the interaction domains and requirements for dimerization and hetero-interactions of the Delta and Omega proteins of pSM19035 plasmid. The RHH structures are involved in Omega dimerization and its N-terminal unstructured part is indispensable for association with Delta, both and . Omega does not need to form dimers to interact with Delta. ATP binding is not required for Delta dimerization but is important for interaction with Omega . The interaction between Delta and Omega depends on ATP but does not require the presence of specific DNA segments (the centromere) recognized by Omega. The C-terminal part of the Delta protein (aa 198–284) is indispensable for interaction with Omega. Delta most probably interacts with Omega as a dimer since two amino acid substitutions in a conserved region between the A′ and B motifs abolish both the dimerization of Delta and its interaction with Omega.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.045369-0
2011-04-01
2019-12-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/4/1009.html?itemId=/content/journal/micro/10.1099/mic.0.045369-0&mimeType=html&fmt=ahah

References

  1. Akhtar, P., Anand, S. P., Watkins, S. C. & Khan, S. A. ( 2009; ). The tubulin-like RepX protein encoded by the pXO1 plasmid forms polymers in vivo in Bacillus anthracis. J Bacteriol 191, 2493–2500.[CrossRef]
    [Google Scholar]
  2. Barillà, D. & Hayes, F. ( 2003; ). Architecture of the ParF*ParG protein complex involved in prokaryotic DNA segregation. Mol Microbiol 49, 487–499.[CrossRef]
    [Google Scholar]
  3. Barillà, D., Rosenberg, M. F., Nobbmann, U. & Hayes, F. ( 2005; ). Bacterial DNA segregation dynamics mediated by the polymerizing protein ParF. EMBO J 24, 1453–1464.[CrossRef]
    [Google Scholar]
  4. Barillà, D., Carmelo, E. & Hayes, F. ( 2007; ). The tail of the ParG DNA segregation protein remodels ParF polymers and enhances ATP hydrolysis via an arginine finger-like motif. Proc Natl Acad Sci U S A 104, 1811–1816.[CrossRef]
    [Google Scholar]
  5. Bartosik, A. A. & Jagura-Burdzy, G. ( 2005; ). Bacterial chromosome segregation. Acta Biochim Pol 52, 1–34.
    [Google Scholar]
  6. Bartosik, A. A., Lasocki, K., Mierzejewska, J., Thomas, C. M. & Jagura-Burdzy, G. ( 2004; ). ParB of Pseudomonas aeruginosa: interactions with its partner ParA and its target parS and specific effects on bacterial growth. J Bacteriol 186, 6983–6998.[CrossRef]
    [Google Scholar]
  7. Behnke, D., Golubkov, V. I., Malke, H., Boitsov, A. S. & Totolian, A. A. ( 1979; ). Restriction endonuclease analysis of group A streptococcal plasmids determining resistance to macrolides, lincosamides and streptogramin-B antibiotics. FEMS Microbiol Lett 6, 5–9.[CrossRef]
    [Google Scholar]
  8. Bignell, C. & Thomas, C. M. ( 2001; ). The bacterial ParA–ParB partitioning proteins. J Biotechnol 91, 1–34.[CrossRef]
    [Google Scholar]
  9. Bouet, J. Y. & Funnell, B. E. ( 1999; ). P1 ParA interacts with the P1 partition complex at parS and an ATP-ADP switch controls ParA activities. EMBO J 18, 1415–1424.[CrossRef]
    [Google Scholar]
  10. Bouet, J.-Y., Ah-Seng, Y., Benmeradi, N. & Lane, D. ( 2007; ). Polymerization of SopA partition ATPase: regulation by DNA binding and SopB. Mol Microbiol 63, 468–481.[CrossRef]
    [Google Scholar]
  11. Bradford, M. M. ( 1976; ). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248–254.[CrossRef]
    [Google Scholar]
  12. Carmelo, E., Barillà, D., Golovanov, A. P., Lian, L. Y., Derome, A. & Hayes, F. ( 2005; ). The unstructured N-terminal tail of ParG modulates assembly of a quaternary nucleoprotein complex in transcription repression. J Biol Chem 280, 28683–28691.[CrossRef]
    [Google Scholar]
  13. Davey, M. J. & Funnell, B. E. ( 1994; ). The P1 plasmid partition protein ParA. A role for ATP in site-specific DNA binding. J Biol Chem 269, 29908–29913.
    [Google Scholar]
  14. Davey, M. J. & Funnell, B. E. ( 1997; ). Modulation of the P1 plasmid partition protein ParA by ATP, ADP, and P1 ParB. J Biol Chem 272, 15286–15292.[CrossRef]
    [Google Scholar]
  15. Davis, M. A., Radnedge, L., Martin, K. A., Hayes, F., Youngren, B. & Austin, S. J. ( 1996; ). The P1 ParA protein and its ATPase activity play a direct role in the segregation of plasmid copies to daughter cells. Mol Microbiol 21, 1029–1036.[CrossRef]
    [Google Scholar]
  16. de la Hoz, A. B., Ayora, S., Sitkiewicz, I., Fernández, S., Pankiewicz, R., Alonso, J. C. & Ceglowski, P. ( 2000; ). Plasmid copy-number control and better-than-random segregation genes of pSM19035 share a common regulator. Proc Natl Acad Sci U S A 97, 728–733.[CrossRef]
    [Google Scholar]
  17. de la Hoz, A. B., Pratto, F., Misselwitz, R., Speck, C., Weihofen, W., Welfle, K., Saenger, W., Welfle, H. & Alonso, J. C. ( 2004; ). Recognition of DNA by omega protein from the broad-host range Streptococcus pyogenes plasmid pSM19035: analysis of binding to operator DNA with one to four heptad repeats. Nucleic Acids Res 32, 3136–3147.[CrossRef]
    [Google Scholar]
  18. Dimitrova, M., Younès-Cauet, G., Oertel-Buchheit, P., Porte, D., Schnarr, M. & Granger-Schnarr, M. ( 1998; ). A new LexA-based genetic system for monitoring and analyzing protein heterodimerization in Escherichia coli. Mol Gen Genet 257, 205–212.[CrossRef]
    [Google Scholar]
  19. Dmowski, M., Sitkiewicz, I. & Ceglowski, P. ( 2006; ). Characterization of a novel partition system encoded by the delta and omega genes from the streptococcal plasmid pSM19035. J Bacteriol 188, 4362–4372.[CrossRef]
    [Google Scholar]
  20. Fogel, M. A. & Waldor, M. K. ( 2006; ). A dynamic, mitotic-like mechanism for bacterial chromosome segregation. Genes Dev 20, 3269–3282.[CrossRef]
    [Google Scholar]
  21. Fung, E., Bouet, J. Y. & Funnell, B. E. ( 2001; ). Probing the ATP-binding site of P1 ParA: partition and repression have different requirements for ATP binding and hydrolysis. EMBO J 20, 4901–4911.[CrossRef]
    [Google Scholar]
  22. Funnell, B. E. ( 1991; ). The P1 plasmid partition complex at parS. The influence of Escherichia coli integration host factor and of substrate topology. J Biol Chem 266, 14328–14337.
    [Google Scholar]
  23. Gerdes, K., Møller-Jensen, J. & Bugge Jensen, R. ( 2000; ). Plasmid and chromosome partitioning: surprises from phylogeny. Mol Microbiol 37, 455–466.
    [Google Scholar]
  24. Gerdes, K., Møller-Jensen, J., Ebersbach, G., Kruse, T. & Nordström, K. ( 2004; ). Bacterial mitotic machineries. Cell 116, 359–366.[CrossRef]
    [Google Scholar]
  25. Golovanov, A. P., Barillà, D., Golovanova, M., Hayes, F. & Lian, L.-Y. ( 2003; ). ParG, a protein required for active partition of bacterial plasmids, has a dimeric ribbon-helix-helix structure. Mol Microbiol 50, 1141–1153.[CrossRef]
    [Google Scholar]
  26. Hanahan, D. ( 1983; ). Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166, 557–580.[CrossRef]
    [Google Scholar]
  27. Hanai, R., Liu, R., Benedetti, P., Caron, P. R., Lynch, A. S. & Wang, J. C. ( 1996; ). Molecular dissection of a protein SopB essential for Escherichia coli F plasmid partition. J Biol Chem 271, 17469–17475.[CrossRef]
    [Google Scholar]
  28. Hayes, F. & Barillà, D. ( 2006; ). Assembling the bacterial segrosome. Trends Biochem Sci 31, 247–250.[CrossRef]
    [Google Scholar]
  29. Kim, S. K. & Shim, J. ( 1999; ). Interaction between F plasmid partition proteins SopA and SopB. Biochem Biophys Res Commun 263, 113–117.[CrossRef]
    [Google Scholar]
  30. Kulinska, A., Czeredys, M., Hayes, F. & Jagura-Burdzy, G. ( 2008; ). Genomic and functional characterization of the modular broad-host-range RA3 plasmid, the archetype of the IncU group. Appl Environ Microbiol 74, 4119–4132.[CrossRef]
    [Google Scholar]
  31. Laemmli, U. K. ( 1970; ). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.[CrossRef]
    [Google Scholar]
  32. Larsen, R. A., Cusumano, C., Fujioka, A., Lim-Fong, G., Patterson, P. & Pogliano, J. ( 2007; ). Treadmilling of a prokaryotic tubulin-like protein, TubZ, required for plasmid stability in Bacillus thuringiensis. Genes Dev 21, 1340–1352.[CrossRef]
    [Google Scholar]
  33. Lasocki, K., Bartosik, A. A., Mierzejewska, J., Thomas, C. M. & Jagura-Burdzy, G. ( 2007; ). Deletion of the parA (soj) homologue in Pseudomonas aeruginosa causes ParB instability and affects growth rate, chromosome segregation, and motility. J Bacteriol 189, 5762–5772.[CrossRef]
    [Google Scholar]
  34. Leonard, T. A., Butler, P. J. & Löwe, J. ( 2005; ). Bacterial chromosome segregation: structure and DNA binding of the Soj dimer – a conserved biological switch. EMBO J 24, 270–282.[CrossRef]
    [Google Scholar]
  35. Li, Y. G., Dabrazhynetskaya, A., Youngren, B. & Austin, S. ( 2004; ). The role of Par proteins in the active segregation of the P1 plasmid. Mol Microbiol 53, 93–102.[CrossRef]
    [Google Scholar]
  36. Lim, G. E., Derman, A. I. & Pogliano, J. ( 2005; ). Bacterial DNA segregation by dynamic SopA polymers. Proc Natl Acad Sci U S A 102, 17658–17663.[CrossRef]
    [Google Scholar]
  37. Lochowska, A., Iwanicka-Nowicka, R., Zaim, J., Witkowska-Zimny, M., Bolewska, K. & Hryniewicz, M. M. ( 2004; ). Identification of activating region (AR) of Escherichia coli LysR-type transcription factor CysB and CysB contact site on RNA polymerase alpha subunit at the cysP promoter. Mol Microbiol 53, 791–806.[CrossRef]
    [Google Scholar]
  38. Lukaszewicz, M., Kostelidou, K., Bartosik, A. A., Cooke, G. D., Thomas, C. M. & Jagura-Burdzy, G. ( 2002; ). Functional dissection of the ParB homologue (KorB) from IncP-1 plasmid RK2. Nucleic Acids Res 30, 1046–1055.[CrossRef]
    [Google Scholar]
  39. Machón, C., Fothergill, T. J. G., Barillà, D. & Hayes, F. ( 2007; ). Promiscuous stimulation of ParF protein polymerization by heterogeneous centromere binding factors. J Mol Biol 374, 1–8.[CrossRef]
    [Google Scholar]
  40. Miller, J. H. ( 1992; ). A Short Course in Bacterial Genetics: a Laboratory Manual and Handbook for Escherichia coli. Cold Spring Harbor, NY. : Cold Spring Harbor Laboratory.
    [Google Scholar]
  41. Møller-Jensen, J. & Gerdes, K. ( 2007; ). Plasmid segregation: spatial awareness at the molecular level. J Cell Biol 179, 813–815.[CrossRef]
    [Google Scholar]
  42. Møller-Jensen, J., Ringgaard, S., Mercogliano, C. P., Gerdes, K. & Löwe, J. ( 2007; ). Structural analysis of the ParR/parC plasmid partition complex. EMBO J 26, 4413–4422.[CrossRef]
    [Google Scholar]
  43. Morrissey, J. H. ( 1981; ). Silver stain for proteins in polyacrylamide gels: a modified procedure with enhanced uniform sensitivity. Anal Biochem 117, 307–310.[CrossRef]
    [Google Scholar]
  44. Murayama, K., Orth, P., de la Hoz, A. B., Alonso, J. C. & Saenger, W. ( 2001; ). Crystal structure of omega transcriptional repressor encoded by Streptococcus pyogenes plasmid pSM19035 at 1.5 A resolution. J Mol Biol 314, 789–796.[CrossRef]
    [Google Scholar]
  45. Myles, G. M., Hearst, J. E. & Sancar, A. ( 1991; ). Site-specific mutagenesis of conserved residues within Walker A and B sequences of Escherichia coli UvrA protein. Biochemistry 30, 3824–3834.[CrossRef]
    [Google Scholar]
  46. Pratto, F., Cicek, A., Weihofen, W. A., Lurz, R., Saenger, W. & Alonso, J. C. ( 2008; ). Streptococcus pyogenes pSM19035 requires dynamic assembly of ATP-bound ParA and ParB on parS DNA during plasmid segregation. Nucleic Acids Res 36, 3676–3689.[CrossRef]
    [Google Scholar]
  47. Pratto, F., Suzuki, Y., Takeyasu, K. & Alonso, J. C. ( 2009; ). Single-molecule analysis of protein–DNA complexes formed during partition of newly replicated plasmid molecules in Streptococcus pyogenes. J Biol Chem 284, 30298–30306.[CrossRef]
    [Google Scholar]
  48. Quisel, J. D. & Grossman, A. D. ( 2000; ). Control of sporulation gene expression in Bacillus subtilis by the chromosome partitioning proteins Soj (ParA) and Spo0J (ParB). J Bacteriol 182, 3446–3451.[CrossRef]
    [Google Scholar]
  49. Ravin, N. V., Rech, J. & Lane, D. ( 2003; ). Mapping of functional domains in F plasmid partition proteins reveals a bipartite SopB-recognition domain in SopA. J Mol Biol 329, 875–889.[CrossRef]
    [Google Scholar]
  50. Ringgaard, S., Löwe, J. & Gerdes, K. ( 2007; ). Centromere pairing by a plasmid-encoded type I ParB protein. J Biol Chem 282, 28216–28225.[CrossRef]
    [Google Scholar]
  51. Sambrook, J. & Russell, D. ( 2001; ). Molecular Cloning. A Laboratory Manual. Cold Spring Harbor, NY. : Cold Spring Harbor Laboratory.
    [Google Scholar]
  52. Schägger, H. & von Jagow, G. ( 1987; ). Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166, 368–379.[CrossRef]
    [Google Scholar]
  53. Schreiter, E. R. & Drennan, C. L. ( 2007; ). Ribbon-helix-helix transcription factors: variations on a theme. Nat Rev Microbiol 5, 710–720.[CrossRef]
    [Google Scholar]
  54. Schumacher, M. A., Glover, T. C., Brzoska, A. J., Jensen, S. O., Dunham, T. D., Skurray, R. A. & Firth, N. ( 2007; ). Segrosome structure revealed by a complex of ParR with centromere DNA. Nature 450, 1268–1271.[CrossRef]
    [Google Scholar]
  55. Sitkiewicz, I. ( 2002; ). The regulatory gene omega of plasmid pSM19035. PhD thesis, Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences.
  56. Studier, F. W. & Moffatt, B. A. ( 1986; ). Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol 189, 113–130.[CrossRef]
    [Google Scholar]
  57. Suefuji, K., Valluzzi, R. & RayChaudhuri, D. ( 2002; ). Dynamic assembly of MinD into filament bundles modulated by ATP, phospholipids, and MinE. Proc Natl Acad Sci U S A 99, 16776–16781.[CrossRef]
    [Google Scholar]
  58. Surtees, J. A. & Funnell, B. E. ( 2001; ). The DNA binding domains of P1 ParB and the architecture of the P1 plasmid partition complex. J Biol Chem 276, 12385–12394.[CrossRef]
    [Google Scholar]
  59. van den Ent, F., Møller-Jensen, J., Amos, L. A., Gerdes, K. & Löwe, J. ( 2002; ). F-actin-like filaments formed by plasmid segregation protein ParM. EMBO J 21, 6935–6943.[CrossRef]
    [Google Scholar]
  60. Welfle, K., Pratto, F., Misselwitz, R., Behlke, J., Alonso, J. C. & Welfle, H. ( 2005; ). Role of the N-terminal region and of beta-sheet residue Thr29 on the activity of the omega2 global regulator from the broad-host range Streptococcus pyogenes plasmid pSM19035. Biol Chem 386, 881–894.
    [Google Scholar]
  61. Williams, D. R., Motallebi-Veshareh, M. & Thomas, C. M. ( 1993; ). Multifunctional repressor KorB can block transcription by preventing isomerization of RNA polymerase-promoter complexes. Nucleic Acids Res 21, 1141–1148.[CrossRef]
    [Google Scholar]
  62. Yanisch-Perron, C., Vieira, J. & Messing, J. ( 1985; ). Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33, 103–119.[CrossRef]
    [Google Scholar]
  63. Zielenkiewicz, U. & Ceglowski, P. ( 2005; ). The toxin-antitoxin system of the streptococcal plasmid pSM19035. J Bacteriol 187, 6094–6105.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.045369-0
Loading
/content/journal/micro/10.1099/mic.0.045369-0
Loading

Data & Media loading...

Supplements

vol. , part 4, pp. 1009 - 1020

Plasmids used in the bacterial two-hybrid system and for protein analyses. Primers used in this work. Alignment of amino acid sequences of ParA-like proteins involved in plasmid and chromosome partition. Alignment of Ribbon-Helix-Helix family proteins involved in plasmid partition based on structural data. Western blot analysis of hybrid proteins with anti-Delta antibodies. [Single PDF](408 KB)



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error