1887

Abstract

The opportunistic human pathogen produces a massive number of asexual spores (conidia) as the primary means of dispersal, survival, genome protection and infection of hosts. In this report, we investigate the functions of two developmental regulators, AbaA and WetA, in . The gene is predicted to encode an ATTS/TEA DNA-binding domain protein and is activated by BrlA during the middle stage of asexual development (conidiation). The deletion of results in the formation of aberrant conidiophores exhibiting reiterated cylinder-like terminal cells lacking spores. Furthermore, the absence of causes delayed autolysis and cell death, whereas the overexpression of accelerates these processes, indicating an additional role for AbaA. The gene is sequentially activated by AbaA in the late phase of conidiation. The deletion of causes the formation of defective spore walls and a lack of trehalose biogenesis, leading to a rapid loss of spore viability and reduced tolerance to various stresses. This is the first report to demonstrate that WetA is essential for trehalose biogenesis in conidia. Moreover, the absence of causes delayed germ-tube formation and reduced hyphal branching, suggesting a role of WetA in the early phase of fungal growth. A genetic model depicting the regulation of conidiation in is proposed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.044271-0
2011-02-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/2/313.html?itemId=/content/journal/micro/10.1099/mic.0.044271-0&mimeType=html&fmt=ahah

References

  1. Adams, D. J. ( 2004; ). Fungal cell wall chitinases and glucanases. Microbiology 150, 2029–2035.[CrossRef]
    [Google Scholar]
  2. Adams, T. H., Boylan, M. T. & Timberlake, W. E. ( 1988; ). brlA is necessary and sufficient to direct conidiophore development in Aspergillus nidulans. Cell 54, 353–362.[CrossRef]
    [Google Scholar]
  3. Adams, T. H., Wieser, J. K. & Yu, J.-H. ( 1998; ). Asexual sporulation in Aspergillus nidulans. Microbiol Mol Biol Rev 62, 35–54.
    [Google Scholar]
  4. Agarwal, R., Hazarika, B., Gupta, D., Aggarwal, A. N., Chakrabarti, A. & Jindal, S. K. ( 2010; ). Aspergillus hypersensitivity in patients with chronic obstructive pulmonary disease: COPD as a risk factor for ABPA? Med Mycol 48, 988–994.[CrossRef]
    [Google Scholar]
  5. Al-Nasiry, S., Geusens, N., Hanssens, M., Luyten, C. & Pijnenborg, R. ( 2007; ). The use of Alamar Blue assay for quantitative analysis of viability, migration and invasion of choriocarcinoma cells. Hum Reprod 22, 1304–1309.[CrossRef]
    [Google Scholar]
  6. Andrianopoulos, A. & Timberlake, W. E. ( 1991; ). ATTS, a new and conserved DNA binding domain. Plant Cell 3, 747–748.[CrossRef]
    [Google Scholar]
  7. Andrianopoulos, A. & Timberlake, W. E. ( 1994; ). The Aspergillus nidulans abaA gene encodes a transcriptional activator that acts as a genetic switch to control development. Mol Cell Biol 14, 2503–2515.[CrossRef]
    [Google Scholar]
  8. Bayram, Ö., Krappmann, S., Ni, M., Bok, J.-W., Helmstaedt, K., Valerius, O., Braus-Stromeyer, S., Kwon, N.-J., Keller, N. P. & other authors ( 2008; ). VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. Science 320, 1504–1506.[CrossRef]
    [Google Scholar]
  9. Boylan, M. T., Mirabito, P. M., Willett, C. E., Zimmerman, C. R. & Timberlake, W. E. ( 1987; ). Isolation and physical characterization of three essential conidiation genes from Aspergillus nidulans. Mol Cell Biol 7, 3113–3118.
    [Google Scholar]
  10. Brookman, J. L. & Denning, D. W. ( 2000; ). Molecular genetics in Aspergillus fumigatus. Curr Opin Microbiol 3, 468–474.[CrossRef]
    [Google Scholar]
  11. Chang, Y. C. & Timberlake, W. E. ( 1993; ). Identification of Aspergillus brlA response elements (BREs) by genetic selection in yeast. Genetics 133, 29–38.
    [Google Scholar]
  12. Clutterbuck, A. J. ( 1969; ). A mutational analysis of conidial development in Aspergillus nidulans. Genetics 63, 317–327.
    [Google Scholar]
  13. Cockrill, B. A. & Hales, C. A. ( 1999; ). Allergic bronchopulmonary aspergillosis. Annu Rev Med 50, 303–316.[CrossRef]
    [Google Scholar]
  14. Dagenais, T. R. T. & Keller, N. P. ( 2009; ). Pathogenesis of Aspergillus fumigatus in invasive aspergillosis. Clin Microbiol Rev 22, 447–465.[CrossRef]
    [Google Scholar]
  15. d'Enfert, C. & Fontaine, T. ( 1997; ). Molecular characterization of the Aspergillus nidulans treA gene encoding an acid trehalase required for growth on trehalose. Mol Microbiol 24, 203–216.[CrossRef]
    [Google Scholar]
  16. Ejzykowicz, D. E., Cunha, M. M., Rozental, S., Solis, N. V., Gravelat, F. N., Sheppard, D. C. & Filler, S. G. ( 2009; ). The Aspergillus fumigatus transcription factor Ace2 governs pigment production, conidiation and virulence. Mol Microbiol 72, 155–169.[CrossRef]
    [Google Scholar]
  17. Elbein, A. D., Pan, Y. T., Pastuszak, I. & Carroll, D. ( 2003; ). New insights on trehalose: a multifunctional molecule. Glycobiology 13, 17R–27R.[CrossRef]
    [Google Scholar]
  18. Emri, T., Molnár, Z., Szilágyi, M. & Pócsi, I. ( 2008; ). Regulation of autolysis in Aspergillus nidulans. Appl Biochem Biotechnol 151, 211–220.[CrossRef]
    [Google Scholar]
  19. Etxebeste, O., Herrero-García, E., Araújo-Bazán, L., Rodríguez-Urra, A. B., Garzia, A., Ugalde, U. & Espeso, E. A. ( 2009; ). The bZIP-type transcription factor FlbB regulates distinct morphogenetic stages of colony formation in Aspergillus nidulans. Mol Microbiol 73, 775–789.
    [Google Scholar]
  20. Fillinger, S., Chaveroche, M., van Dijck, P., de Vries, R., Ruijter, G., Thevelein, J. & d'Enfert, C. ( 2001; ). Trehalose is required for the acquisition of tolerance to a variety of stresses in the filamentous fungus Aspergillus nidulans. Microbiology 147, 1851–1862.
    [Google Scholar]
  21. Gao, X., Chen, L., Hu, G. & Mei, H. ( 2010; ). Invasive pulmonary aspergillosis in acute exacerbation of chronic obstructive pulmonary disease and the diagnostic value of combined serological tests. Ann Saudi Med 30, 193–197.[CrossRef]
    [Google Scholar]
  22. Käfer, E. ( 1977; ). Meiotic and mitotic recombination in Aspergillus and its chromosomal aberrations. Adv Genet 19, 33–131.
    [Google Scholar]
  23. Kwon, N.-J., Shin, K.-S. & Yu, J.-H. ( 2010; ). Characterization of the developmental regulator FlbE in Aspergillus fumigatus and Aspergillus nidulans. Fungal Genet Biol 47, 981–993.[CrossRef]
    [Google Scholar]
  24. Mah, J.-H. & Yu, J.-H. ( 2006; ). Upstream and downstream regulation of asexual development in Aspergillus fumigatus. Eukaryot Cell 5, 1585–1595.[CrossRef]
    [Google Scholar]
  25. Marshall, M. A. & Timberlake, W. E. ( 1991; ). Aspergillus nidulans wetA activates spore-specific gene expression. Mol Cell Biol 11, 55–62.
    [Google Scholar]
  26. Mims, C. W., Richardson, E. A. & Timberlake, W. E. ( 1988; ). Ultrastructural analysis of conidiophore development in the fungus Aspergillus nidulans using freeze-substitution. Protoplasma 144, 132–141.[CrossRef]
    [Google Scholar]
  27. Mirabito, P. M., Adams, T. H. & Timberlake, W. E. ( 1989; ). Interactions of three sequentially expressed genes control temporal and spatial specificity in Aspergillus development. Cell 57, 859–868.[CrossRef]
    [Google Scholar]
  28. Ni, M. & Yu, J.-H. ( 2007; ). A novel regulator couples sporogenesis and trehalose biogenesis in Aspergillus nidulans. PLoS ONE 2, e970.[CrossRef]
    [Google Scholar]
  29. Ni, M., Gao, N., Kwon, N.-J., Shin, K.-S. & Yu, J.-H. ( 2010; ). Regulation of Aspergillus conidiation. In Cellular and Molecular Biology of Filamentous Fungi, pp. 559–576. Edited by Borkovich, K. A. & Ebbole, D. J.. Washington, DC. : American Society for Microbiology.
    [Google Scholar]
  30. Nierman, W. C., Pain, A., Anderson, M. J., Wortman, J. R., Kim, H. S., Arroyo, J., Berriman, M., Abe, K., Archer, D. B. & other authors ( 2005; ). Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature 438, 1151–1156.[CrossRef]
    [Google Scholar]
  31. Reyes, G., Romans, A., Nguyen, C. K. & May, G. S. ( 2006; ). Novel mitogen-activated protein kinase MpkC of Aspergillus fumigatus is required for utilization of polyalcohol sugars. Eukaryot Cell 5, 1934–1940.[CrossRef]
    [Google Scholar]
  32. Rhodes, J. C. & Askew, D. S. ( 2010; ). Aspergillus fumigatus. In Cellular and Molecular Biology of Filamentous Fungi, pp. 697–716. Edited by Borkovich, K. A. & Ebbole, D. J.. Washington, DC. : American Society for Microbiology.
    [Google Scholar]
  33. Seo, J.-A., Guan, Y. & Yu, J.-H. ( 2003; ). Suppressor mutations bypass the requirement of fluG for asexual sporulation and sterigmatocystin production in Aspergillus nidulans. Genetics 165, 1083–1093.
    [Google Scholar]
  34. Seo, J.-A., Guan, Y. & Yu, J.-H. ( 2006; ). FluG-dependent asexual development in Aspergillus nidulans occurs via derepression. Genetics 172, 1535–1544.
    [Google Scholar]
  35. Sewall, T. C., Mims, C. W. & Timberlake, W. E. ( 1990a; ). abaA controls phialide differentiation in Aspergillus nidulans. Plant Cell 2, 731–739.[CrossRef]
    [Google Scholar]
  36. Sewall, T. C., Mims, C. W. & Timberlake, W. E. ( 1990b; ). Conidium differentiation in Aspergillus nidulans wild-type and wet-white (wetA) mutant strains. Dev Biol 138, 499–508.[CrossRef]
    [Google Scholar]
  37. Shin, K.-S., Kwon, N.-J., Kim, Y.-H., Park, H.-S., Kwon, G.-S. & Yu, J.-H. ( 2009a; ). Differential roles of the ChiB chitinase in autolysis and cell death of Aspergillus nidulans. Eukaryot Cell 8, 738–746.[CrossRef]
    [Google Scholar]
  38. Shin, K.-S., Kwon, N.-J. & Yu, J.-H. ( 2009b; ). Gbetagamma-mediated growth and developmental control in Aspergillus fumigatus. Curr Genet 55, 631–641.[CrossRef]
    [Google Scholar]
  39. Szewczyk, E., Nayak, T., Oakley, C. E., Edgerton, H., Xiong, Y., Taheri-Talesh, N., Osmani, S. A. & Oakley, B. R. ( 2006; ). Fusion PCR and gene targeting in Aspergillus nidulans. Nat Protoc 1, 3111–3120.
    [Google Scholar]
  40. Tao, L., Gao, N., Chen, S. & Yu, J.-H. ( 2010; ). The choC gene encoding a putative phospholipid methyltransferase is essential for growth and development in Aspergillus nidulans. Curr Genet 56, 283–296.[CrossRef]
    [Google Scholar]
  41. Thau, N., Monod, M., Crestani, B., Rolland, C., Tronchin, G., Latgé, J. P. & Paris, S. ( 1994; ). rodletless mutants of Aspergillus fumigatus. Infect Immun 62, 4380–4388.
    [Google Scholar]
  42. Wasylnka, J. A. & Moore, M. M. ( 2003; ). Aspergillus fumigatus conidia survive and germinate in acidic organelles of A549 epithelial cells. J Cell Sci 116, 1579–1587.[CrossRef]
    [Google Scholar]
  43. White, S., McIntyre, M., Berry, D. R. & McNeil, B. ( 2002; ). The autolysis of industrial filamentous fungi. Crit Rev Biotechnol 22, 1–14.[CrossRef]
    [Google Scholar]
  44. Xiao, P., Shin, K.-S., Wang, T. & Yu, J.-H. ( 2010; ). Aspergillus fumigatus flbB encodes two basic leucine zipper domain (bZIP) proteins required for proper asexual development and gliotoxin production. Eukaryot Cell 9, 1711–1723.[CrossRef]
    [Google Scholar]
  45. Xue, T., Nguyen, C. K., Romans, A., Kontoyiannis, D. P. & May, G. S. ( 2004; ). Isogenic auxotrophic mutant strains in the Aspergillus fumigatus genome reference strain AF293. Arch Microbiol 182, 346–353.[CrossRef]
    [Google Scholar]
  46. Yamazaki, H., Yamazaki, D., Takaya, N., Takagi, M., Ohta, A. & Horiuchi, H. ( 2007; ). A chitinase gene, chiB, involved in the autolytic process of Aspergillus nidulans. Curr Genet 51, 89–98.[CrossRef]
    [Google Scholar]
  47. Yu, J.-H. ( 2011; ). Regulation of development in Aspergillus nidulans and Aspergillus fumigatus. Mycobiology (in press ).
    [Google Scholar]
  48. Yu, J.-H., Hamari, Z., Han, K.-H., Seo, J.-A., Reyes-Domínguez, Y. & Scazzocchio, C. ( 2004; ). Double-joint PCR: a PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal Genet Biol 41, 973–981.[CrossRef]
    [Google Scholar]
  49. Yu, J.-H., Mah, J.-H. & Seo, J.-A. ( 2006; ). Growth and developmental control in the model and pathogenic aspergilli. Eukaryot Cell 5, 1577–1584.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.044271-0
Loading
/content/journal/micro/10.1099/mic.0.044271-0
Loading

Data & Media loading...

Supplements

Oligonucleotides used in this study

PDF

Oligonucleotides used in this study

IMAGE
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error