1887

Abstract

The PAO1 genome has at least two genes, and encoding acylhomoserine lactone (AHL) acylases. Two additional genes, and , have been predicted to encode penicillin acylase proteins, but have not been characterized. Initial studies on a transposon insertion mutant suggested that the gene is not related to the AHL growth phenotype of . The close similarity (67 %) of to HacB, an AHL acylase of , prompted us to investigate whether the PA0305 protein might also function as an AHL acylase. The gene has been cloned and the protein (PA0305) has been overproduced, purified and subjected to functional characterization. Analysis of the purified protein showed that, like β-lactam acylases, PA0305 undergoes post-translational processing resulting in α- and β-subunits, with the catalytic serine as the first amino acid of the β-subunit, strongly suggesting that PA0305 is a member of the N-terminal nucleophile hydrolase superfamily. Using a biosensor assay, PA0305his was shown to degrade AHLs with acyl side chains ranging in length from 6 to 14 carbons. Kinetics studies using -octanoyl--homoserine lactone (C-HSL) and -(3-oxo-dodecanoyl)--homoserine lactone (3-oxo-C-HSL) as substrates showed that the enzyme has a robust activity towards these two AHLs, with apparent / values of 0.14×10 M s towards C-HSL and 7.8×10 Ms towards 3-oxo-C-HSL. Overexpression of the gene in showed significant reductions in both accumulation of 3-oxo-C-HSL and expression of virulence factors. A mutant strain with a deleted gene showed a slightly increased capacity to kill compared with the PAO1 wild-type strain and the PAO1 strain carrying a plasmid overexpressing . The harmful effects of the Δ strain on the animals were most visible at 5 days post-exposure and the mortality rate of the animals fed on the Δ strain was faster than for the animals fed on either the wild-type strain or the strain overexpressing In conclusion, the gene encodes an efficient acylase with activity towards long-chain homoserine lactones, including 3-oxo-C-HSL, the natural quorum sensing signal molecule in and we propose to name this acylase HacB.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.043935-0
2011-07-01
2019-09-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/7/2042.html?itemId=/content/journal/micro/10.1099/mic.0.043935-0&mimeType=html&fmt=ahah

References

  1. Bokhove M., Nadal Jimenez P., Quax W. J., Dijkstra B. W.. ( 2010;). The quorum-quenching N-acyl homoserine lactone acylase PvdQ is an Ntn-hydrolase with an unusual substrate-binding pocket. . Proc Natl Acad Sci U S A 107:, 686–691. [CrossRef].[PubMed].
    [Google Scholar]
  2. de Kievit T. R.. ( 2009;). Quorum sensing in Pseudomonas aeruginosa biofilms. . Environ Microbiol 11:, 279–288. [CrossRef].[PubMed].
    [Google Scholar]
  3. Diggle S. P., Winzer K., Chhabra S. R., Worrall K. E., Cámara M., Williams P.. ( 2003;). The Pseudomonas aeruginosa quinolone signal molecule overcomes the cell density-dependency of the quorum sensing hierarchy, regulates rhl-dependent genes at the onset of stationary phase and can be produced in the absence of LasR. . Mol Microbiol 50:, 29–43. [CrossRef].[PubMed].
    [Google Scholar]
  4. Dong Y. H., Wang L. H., Xu J. L., Zhang H. B., Zhang X. F., Zhang L. H.. ( 2001;). Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase. . Nature 411:, 813–817. [CrossRef].[PubMed].
    [Google Scholar]
  5. Essar D. W., Eberly L., Hadero A., Crawford I. P.. ( 1990;). Identification and characterization of genes for a second anthranilate synthase in Pseudomonas aeruginosa: interchangeability of the two anthranilate synthases and evolutionary implications. . J Bacteriol 172:, 884–900.[PubMed].
    [Google Scholar]
  6. Fürste J. P., Pansegrau W., Frank R., Blöcker H., Scholz P., Bagdasarian M., Lanka E.. ( 1986;). Molecular cloning of the plasmid RP4 primase region in a multi-host-range tacP expression vector. . Gene 48:, 119–131. [CrossRef].[PubMed].
    [Google Scholar]
  7. Hoang T. T., Karkhoff-Schweizer R. R., Kutchma A. J., Schweizer H. P.. ( 1998;). A broad-host-range Flp–FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. . Gene 212:, 77–86. [CrossRef].[PubMed].
    [Google Scholar]
  8. Huang J. J., Han J. I., Zhang L. H., Leadbetter J. R.. ( 2003;). Utilization of acyl-homoserine lactone quorum signals for growth by a soil pseudomonad and Pseudomonas aeruginosa PAO1. . Appl Environ Microbiol 69:, 5941–5949. [CrossRef].[PubMed].
    [Google Scholar]
  9. Huang J. J., Petersen A., Whiteley M., Leadbetter J. R.. ( 2006;). Identification of QuiP, the product of gene PA1032, as the second acyl-homoserine lactone acylase of Pseudomonas aeruginosa PAO1. . Appl Environ Microbiol 72:, 1190–1197. [CrossRef].[PubMed].
    [Google Scholar]
  10. Krzeslak J., Wahjudi M., Quax W. J.. ( 2007;). Quorum quenching acylases in Pseudomonas aeruginosa. . In Pseudomonas: a Model System in Biology, vol. 5, pp. 429–449. Edited by Ramos J.-L., Filloux A... Netherlands:: Springer;.
    [Google Scholar]
  11. Kwon T. H., Rhee S., Lee Y. S., Park S. S., Kim K. H.. ( 2000;). Crystallization and preliminary X-ray diffraction analysis of glutaryl-7-aminocephalosporanic acid acylase from Pseudomonas sp. GK16. . J Struct Biol 131:, 79–81. [CrossRef].[PubMed].
    [Google Scholar]
  12. Lamont I. L., Martin L. W.. ( 2003;). Identification and characterization of novel pyoverdine synthesis genes in Pseudomonas aeruginosa. . Microbiology 149:, 833–842. [CrossRef].[PubMed].
    [Google Scholar]
  13. Lin Y. H., Xu J. L., Hu J., Wang L. H., Ong S. L., Leadbetter J. R., Zhang L. H.. ( 2003;). Acyl-homoserine lactone acylase from Ralstonia strain XJ12B represents a novel and potent class of quorum-quenching enzymes. . Mol Microbiol 47:, 849–860. [CrossRef].[PubMed].
    [Google Scholar]
  14. Liu D., Thomas P. W., Momb J., Hoang Q. Q., Petsko G. A., Ringe D., Fast W.. ( 2007;). Structure and specificity of a quorum-quenching lactonase (AiiB) from Agrobacterium tumefaciens. . Biochemistry 46:, 11789–11799. [CrossRef].[PubMed].
    [Google Scholar]
  15. Lyczak J. B., Cannon C. L., Pier G. B.. ( 2000;). Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist. . Microbes Infect 2:, 1051–1060. [CrossRef].[PubMed].
    [Google Scholar]
  16. Meevootisom V., Somsuk P., Prachaktam R., Flegel T. W.. ( 1983;). Simple screening method for isolation of penicillin acylase-producing bacteria. . Appl Environ Microbiol 46:, 1227–1229.[PubMed].
    [Google Scholar]
  17. Ohman D. E., Cryz S. J., Iglewski B. H.. ( 1980;). Isolation and characterization of Pseudomonas aeruginosa PAO mutant that produces altered elastase. . J Bacteriol 142:, 836–842.[PubMed].
    [Google Scholar]
  18. Otten L. G., Sio C. F., Reis C. R., Koch G., Cool R. H., Quax W. J.. ( 2007;). A highly active adipyl-cephalosporin acylase obtained via rational randomization. . FEBS J 274:, 5600–5610. [CrossRef].[PubMed].
    [Google Scholar]
  19. Papaioannou E., Wahjudi M., Nadal-Jimenez P., Koch G., Setroikromo R., Quax W. J.. ( 2009;). Quorum-quenching acylase reduces the virulence of Pseudomonas aeruginosa in a Caenorhabditis elegans infection model. . Antimicrob Agents Chemother 53:, 4891–4897. [CrossRef].[PubMed].
    [Google Scholar]
  20. Pfaffl M. W.. ( 2001;). A new mathematical model for relative quantification in real-time RT-PCR. . Nucleic Acids Res 29:, e45. [CrossRef].[PubMed].
    [Google Scholar]
  21. Schumacher G., Sizmann D., Haug H., Buckel P., Böck A.. ( 1986;). Penicillin acylase from E. coli: unique gene–protein relation. . Nucleic Acids Res 14:, 5713–5727. [CrossRef].[PubMed].
    [Google Scholar]
  22. Shepherd R. W., Lindow S. E.. ( 2009;). Two dissimilar N-acyl-homoserine lactone acylases of Pseudomonas syringae influence colony and biofilm morphology. . Appl Environ Microbiol 75:, 45–53. [CrossRef].[PubMed].
    [Google Scholar]
  23. Simon R., Quandt J., Klipp W.. ( 1989;). New derivatives of transposon Tn5 suitable for mobilization of replicons, generation of operon fusions and induction of genes in Gram-negative bacteria. . Gene 80:, 161–169. [CrossRef].[PubMed].
    [Google Scholar]
  24. Sio C. F., Quax W. J.. ( 2004;). Improved β-lactam acylases and their use as industrial biocatalysts. . Curr Opin Biotechnol 15:, 349–355. [CrossRef].[PubMed].
    [Google Scholar]
  25. Sio C. F., Riemens A. M., van der Laan J. M., Verhaert R. M., Quax W. J.. ( 2002;). Directed evolution of a glutaryl acylase into an adipyl acylase. . Eur J Biochem 269:, 4495–4504. [CrossRef].[PubMed].
    [Google Scholar]
  26. Sio C. F., Otten L. G., Cool R. H., Quax W. J.. ( 2003;). Analysis of a substrate specificity switch residue of cephalosporin acylase. . Biochem Biophys Res Commun 312:, 755–760. [CrossRef].[PubMed].
    [Google Scholar]
  27. Sio C. F., Otten L. G., Cool R. H., Diggle S. P., Braun P. G., Bos R., Daykin M., Cámara M., Williams P., Quax W. J.. ( 2006;). Quorum quenching by an N-acyl-homoserine lactone acylase from Pseudomonas aeruginosa PAO1. . Infect Immun 74:, 1673–1682. [CrossRef].[PubMed].
    [Google Scholar]
  28. Smith A. W., Iglewski B. H.. ( 1989;). Transformation of Pseudomonas aeruginosa by electroporation. . Nucleic Acids Res 17:, 10509. [CrossRef].[PubMed].
    [Google Scholar]
  29. Stover C. K., Pham X. Q., Erwin A. L., Mizoguchi S. D., Warrener P., Hickey M. J., Brinkman F. S. L., Hufnagle W. O., Kowalik D. J. et al. ( 2000;). Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. . Nature 406:, 959–964. [CrossRef].[PubMed].
    [Google Scholar]
  30. Swift S., Karlyshev A. V., Fish L., Durant E. L., Winson M. K., Chhabra S. R., Williams P., Macintyre S., Stewart G. S. A. B.. ( 1997;). Quorum sensing in Aeromonas hydrophila and Aeromonas salmonicida: identification of the LuxRI homologs AhyRI and AsaRI and their cognate N-acylhomoserine lactone signal molecules. . J Bacteriol 179:, 5271–5281.[PubMed].
    [Google Scholar]
  31. Tan M. W., Ausubel F. M.. ( 2000;). Caenorhabditis elegans: a model genetic host to study Pseudomonas aeruginosa pathogenesis. . Curr Opin Microbiol 3:, 29–34. [CrossRef].[PubMed].
    [Google Scholar]
  32. Tatterson L. E., Poschet J. F., Firoved A., Skidmore J., Deretic V.. ( 2001;). CFTR and pseudomonas infections in cystic fibrosis. . Front Biosci 6:, D890–D897. [CrossRef].[PubMed].
    [Google Scholar]
  33. Uroz S., Oger P. M., Chapelle E., Adeline M. T., Faure D., Dessaux Y.. ( 2008;). A Rhodococcus qsdA-encoded enzyme defines a novel class of large-spectrum quorum-quenching lactonases. . Appl Environ Microbiol 74:, 1357–1366. [CrossRef].[PubMed].
    [Google Scholar]
  34. Verhaert R. M., Riemens A. M., van der Laan J. M., van Duin J., Quax W. J.. ( 1997;). Molecular cloning and analysis of the gene encoding the thermostable penicillin G acylase from Alcaligenes faecalis. . Appl Environ Microbiol 63:, 3412–3418.[PubMed].
    [Google Scholar]
  35. Wagner V. E., Bushnell D., Passador L., Brooks A. I., Iglewski B. H.. ( 2003;). Microarray analysis of Pseudomonas aeruginosa quorum-sensing regulons: effects of growth phase and environment. . J Bacteriol 185:, 2080–2095. [CrossRef].[PubMed].
    [Google Scholar]
  36. Wagner V. E., Gillis R. J., Iglewski B. H.. ( 2004;). Transcriptome analysis of quorum-sensing regulation and virulence factor expression in Pseudomonas aeruginosa. . Vaccine 22: Suppl. 1S15–S20. [CrossRef].[PubMed].
    [Google Scholar]
  37. West S. E. H., Schweizer H. P., Dall C., Sample A. K., Runyen-Janecky L. J.. ( 1994;). Construction of improved EscherichiaPseudomonas shuttle vectors derived from pUC18/19 and sequence of the region required for their replication in Pseudomonas aeruginosa. . Gene 148:, 81–86. [CrossRef].[PubMed].
    [Google Scholar]
  38. Winson M. K., Swift S., Fish L., Throup J. P., Jørgensen F., Chhabra S. R., Bycroft B. W., Williams P., Stewart G. S.. ( 1998;). Construction and analysis of luxCDABE-based plasmid sensors for investigating N-acyl homoserine lactone-mediated quorum sensing. . FEMS Microbiol Lett 163:, 185–192. [CrossRef].[PubMed].
    [Google Scholar]
  39. Winsor G. L., Van Rossum T., Lo R., Khaira B., Whiteside M. D., Hancock R. E., Brinkman F. S.. ( 2009;). Pseudomonas Genome Database: facilitating user-friendly, comprehensive comparisons of microbial genomes. . Nucleic Acids Res 37: Database issueD483–D488. [CrossRef].[PubMed].
    [Google Scholar]
  40. Wolf J. H., Korf J.. ( 1990;). Improved automated precolumn derivatization reaction of fatty acids with bromomethylmethoxycoumarin as label. . J Chromatogr A 502:, 423–430. [CrossRef].[PubMed].
    [Google Scholar]
  41. Yates E. A., Philipp B., Buckley C., Atkinson S., Chhabra S. R., Sockett R. E., Goldner M., Dessaux Y., Cámara M. et al. ( 2002;). N-Acylhomoserine lactones undergo lactonolysis in a pH-, temperature-, and acyl chain length-dependent manner during growth of Yersinia pseudotuberculosis and Pseudomonas aeruginosa. . Infect Immun 70:, 5635–5646. [CrossRef].[PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.043935-0
Loading
/content/journal/micro/10.1099/mic.0.043935-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error