1887

Abstract

Polyamines such as cadaverine, putrescine and spermidine are polycationic molecules that have pleiotropic effects on cells via their interaction with nucleic acids. (the pneumococcus) is a Gram-positive pathogen capable of causing pneumonia, septicaemia, otitis media and meningitis. Pneumococci have a polyamine transport operon () responsible for the binding and transport of putrescine and spermidine, and can synthesize cadaverine and spermidine using their lysine decarboxylase () and spermidine synthase () enzymes. Previous studies from our laboratory have shown that an increase in PotD expression is seen following exposure to various stresses, while during infection, inactivation significantly attenuates pneumococcal virulence, and anti-PotD immune responses are protective in mice. In spite of their relative importance, not much is known about the global contribution of polyamine biosynthesis and transport pathways to pneumococcal disease. Mutants deficient in polyamine biosynthesis (Δ or Δ) or transport genes (Δ) were constructed and were found to be attenuated in murine models of pneumococcal colonization and pneumonia, either alone or in competition with the wild-type strain. The Δ mutant was also attenuated during invasive disease, while the and genes seemed to be dispensable. HPLC analyses showed reduced intracellular polyamine levels in all mutant strains compared with wild-type bacteria. High-throughput proteomic analyses indicated reduced expression of growth, replication and virulence factors in mutant strains. Thus, polyamine biosynthesis and transport mechanisms are intricately linked to the fitness, survival and pathogenesis of the pneumococcus in host microenvironments, and may represent important targets for prophylactic and therapeutic interventions.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.042564-0
2011-02-01
2020-09-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/2/504.html?itemId=/content/journal/micro/10.1099/mic.0.042564-0&mimeType=html&fmt=ahah

References

  1. Adrian P. V., Thomson C. J., Klugman K. P., Amyes S. G.. 2000; New gene cassettes for trimethoprim resistance, dfr13 , and streptomycin–spectinomycin resistance, aadA4 , inserted on a class 1 integron. Antimicrob Agents Chemother44:355–361
    [Google Scholar]
  2. Alteri C. J., Smith S. N., Mobley H. L.. 2009; Fitness of Escherichia coli during urinary tract infection requires gluconeogenesis and the TCA cycle. PLoS Pathog5:e1000448
    [Google Scholar]
  3. Barelle C. J., Priest C. L., Maccallum D. M., Gow N. A., Odds F. C., Brown A. J.. 2006; Niche-specific regulation of central metabolic pathways in a fungal pathogen. Cell Microbiol8:961–971
    [Google Scholar]
  4. Basavanna S., Khandavilli S., Yuste J., Cohen J. M., Hosie A. H., Webb A. J., Thomas G. H., Brown J. S.. 2009; Screening of Streptococcus pneumoniae ABC transporter mutants demonstrates that LivJHMGF, a branched chain amino acid ABC transporter, is necessary for disease pathogenesis. Infect Immun77:3412–3423
    [Google Scholar]
  5. Benjamini Y., Hochberg Y.. 1995; Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B Stat Methodol57:289–300
    [Google Scholar]
  6. Bower J. M., Gordon-Raagas H. B., Mulvey M. A.. 2009; Conditioning of uropathogenic Escherichia coli for enhanced colonization of host. Infect Immun77:2104–2112
    [Google Scholar]
  7. Bricker A. L., Camilli A.. 1999; Transformation of a type 4 encapsulated strain of Streptococcus pneumoniae . FEMS Microbiol Lett172:131–135
    [Google Scholar]
  8. Bridges S. M., Magee G. B., Wang N., Williams W. P., Burgess S. C., Nanduri B.. 2007; ProtQuant: a tool for the label-free quantification of MudPIT proteomics data. BMC Bioinformatics8:Suppl. 7S24
    [Google Scholar]
  9. Briles D. E., Forman C., Hudak S., Claflin J. L.. 1982; Anti-phosphorylcholine antibodies of the T15 idiotype are optimally protective against Streptococcus pneumoniae . J Exp Med156:1177–1185
    [Google Scholar]
  10. Briles D. E., Hollingshead S. K., Paton J. C., Ades E. W., Novak L., van Ginkel F. W., Benjamin W. H.. 2003; Immunizations with pneumococcal surface protein A and pneumolysin are protective against pneumonia in a murine model of pulmonary infection with Streptococcus pneumoniae . J Infect Dis188:339–348
    [Google Scholar]
  11. Chattopadhyay M. K., Tabor C. W., Tabor H.. 2003; Polyamines protect Escherichia coli cells from the toxic effect of oxygen. Proc Natl Acad Sci U S A100:2261–2265
    [Google Scholar]
  12. Chattopadhyay M. K., Tabor C. W., Tabor H.. 2009; Polyamines are not required for aerobic growth of Escherichia coli : preparation of a strain with deletions in all of the genes for polyamine biosynthesis. J Bacteriol191:5549–5552
    [Google Scholar]
  13. Chou H. T., Kwon D. H., Hegazy M., Lu C. D.. 2008; Transcriptome analysis of agmatine and putrescine catabolism in Pseudomonas aeruginosa PAO1. J Bacteriol190:1966–1975
    [Google Scholar]
  14. Dagan R.. 2000; Treatment of acute otitis media – challenges in the era of antibiotic resistance. Vaccine19:Suppl. 1S9–S16
    [Google Scholar]
  15. Du M., Flanigan V., Ma Y.. 2004; Simultaneous determination of polyamines and catecholamines in PC-12 tumor cell extracts by capillary electrophoresis with laser-induced fluorescence detection. Electrophoresis25:1496–1502
    [Google Scholar]
  16. Eng J. K., McCormack A. L., Yates J. R. III. 1994; An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom5:976–989
    [Google Scholar]
  17. Fedson D. S.. 1999; The clinical effectiveness of pneumococcal vaccination: a brief review. Vaccine17:Suppl. 1S85–S90
    [Google Scholar]
  18. File T. M. Jr. 2004; Streptococcus pneumoniae and community-acquired pneumonia: a cause for concern. Am J Med117:Suppl. 3A39S–50S
    [Google Scholar]
  19. Gupta R., Shah P., Swiatlo E.. 2009; Differential gene expression in Streptococcus pneumoniae in response to various iron sources. Microb Pathog47:101–109
    [Google Scholar]
  20. Ha H. C., Sirisoma N. S., Kuppusamy P., Zweier J. L., Woster P. M., Casero R. A. Jr. 1998; The natural polyamine spermine functions directly as a free radical scavenger. Proc Natl Acad Sci U S A95:11140–11145
    [Google Scholar]
  21. Hassett D. J., Britigan B. E., Svendsen T., Rosen G. M., Cohen M. S.. 1987; Bacteria form intracellular free radicals in response to paraquat and streptonigrin. Demonstration of the potency of hydroxyl radical. J Biol Chem262:13404–13408
    [Google Scholar]
  22. Hava D. L., Camilli A.. 2002; Large-scale identification of serotype 4 Streptococcus pneumoniae virulence factors. Mol Microbiol45:1389–1406
    [Google Scholar]
  23. Huang S. S., Platt R., Rifas-Shiman S. L., Pelton S. I., Goldmann D., Finkelstein J. A.. 2005; Post-PCV7 changes in colonizing pneumococcal serotypes in 16 Massachusetts communities, 2001 and 2004. Pediatrics116:e408–e413
    [Google Scholar]
  24. Igarashi K., Ito K., Kashiwagi K.. 2001; Polyamine uptake systems in Escherichia coli . Res Microbiol152:271–278
    [Google Scholar]
  25. Iyer R., Camilli A.. 2007; Sucrose metabolism contributes to in vivo fitness of Streptococcus pneumoniae . Mol Microbiol66:1–13
    [Google Scholar]
  26. Iyer R., Baliga N. S., Camilli A.. 2005; Catabolite control protein A (CcpA) contributes to virulence and regulation of sugar metabolism in Streptococcus pneumoniae . J Bacteriol187:8340–8349
    [Google Scholar]
  27. Jung I. L., Kim I. G.. 2003a; Polyamines reduce paraquat-induced soxS and its regulon expression in Escherichia coli . Cell Biol Toxicol19:29–41
    [Google Scholar]
  28. Jung I. L., Kim I. G.. 2003b; Polyamines and glutamate decarboxylase-based acid resistance in Escherichia coli . J Biol Chem278:22846–22852
    [Google Scholar]
  29. Kadioglu A., Weiser J. N., Paton J. C., Andrew P. W.. 2008; The role of Streptococcus pneumoniae virulence factors in host respiratory colonization and disease. Nat Rev Microbiol6:288–301
    [Google Scholar]
  30. Khan A. U., Di Mascio P., Medeiros M. H., Wilson T.. 1992; Spermine and spermidine protection of plasmid DNA against single-strand breaks induced by singlet oxygen. Proc Natl Acad Sci U S A89:11428–11430
    [Google Scholar]
  31. Lau P. C., Sung C. K., Lee J. H., Morrison D. A., Cvitkovitch D. G.. 2002; PCR ligation mutagenesis in transformable streptococci: application and efficiency. J Microbiol Methods49:193–205
    [Google Scholar]
  32. Lee J., Sperandio V., Frantz D. E., Longgood J., Camilli A., Phillips M. A., Michael A. J.. 2009; An alternative polyamine biosynthetic pathway is widespread in bacteria and essential for biofilm formation in Vibrio cholerae . J Biol Chem284:9899–9907
    [Google Scholar]
  33. López-Ferrer D., Martinez-Bartolome S., Villar M., Campillos M., Martin-Maroto F., Vazquez J.. 2004; Statistical model for large-scale peptide identification in databases from tandem mass spectra using SEQUEST. Anal Chem76:6853–6860
    [Google Scholar]
  34. MacCoss M. J., Wu C. C., Yates J. R. III. 2002; Probability-based validation of protein identifications using a modified SEQUEST algorithm. Anal Chem74:5593–5599
    [Google Scholar]
  35. Manco S., Hernon F., Yesilkaya H., Paton J. C., Andrew P. W., Kadioglu A.. 2006; Pneumococcal neuraminidases A and B both have essential roles during infection of the respiratory tract and sepsis. Infect Immun74:4014–4020
    [Google Scholar]
  36. McCullers J. A., Tuomanen E. I.. 2001; Molecular pathogenesis of pneumococcal pneumonia. Front Biosci6:D877–D889
    [Google Scholar]
  37. Muñoz-Elías E. J., McKinney J. D.. 2005; Mycobacterium tuberculosis isocitrate lyases 1 and 2 are jointly required for in vivo growth and virulence. Nat Med11:638–644
    [Google Scholar]
  38. Naderer T., Ellis M. A., Sernee M. F., De Souza D. P., Curtis J., Handman E., McConville M. J.. 2006; Virulence of Leishmania major in macrophages and mice requires the gluconeogenic enzyme fructose-1,6-bisphosphatase. Proc Natl Acad Sci U S A103:5502–5507
    [Google Scholar]
  39. Nanduri B., Shah P., Ramkumar M., Allen E. B., Swiatlo E., Burgess S. C., Lawrence M. L.. 2008; Quantitative analysis of Streptococcus pneumoniae TIGR4 response to in vitro iron restriction by 2-D LC ESI MS/MS. Proteomics8:2104–2114
    [Google Scholar]
  40. O'Brien K. L., Nohynek H.. 2003; Report from a WHO Working Group: standard method for detecting upper respiratory carriage of Streptococcus pneumoniae . Pediatr Infect Dis J22:e1–e11
    [Google Scholar]
  41. Old W. M., Meyer-Arendt K., Aveline-Wolf L., Pierce K. G., Mendoza A., Sevinsky J. R., Resing K. A., Ahn N. G.. 2005; Comparison of label-free methods for quantifying human proteins by shotgun proteomics. Mol Cell Proteomics4:1487–1502
    [Google Scholar]
  42. Polissi A., Pontiggia A., Feger G., Altieri M., Mottl H., Ferrari L., Simon D.. 1998; Large-scale identification of virulence genes from Streptococcus pneumoniae . Infect Immun66:5620–5629
    [Google Scholar]
  43. Potter A. J., Kidd S. P., McEwan A. G., Paton J. C.. 2010; The MerR/NmlR family transcription factor of Streptococcus pneumoniae responds to carbonyl stress and modulates hydrogen peroxide production. J Bacteriol192:4063–4066
    [Google Scholar]
  44. Qian W. J., Liu T., Monroe M. E., Strittmatter E. F., Jacobs J. M., Kangas L. J., Petritis K., Camp D. G. II, Smith R. D.. 2005; Probability-based evaluation of peptide and protein identifications from tandem mass spectrometry and SEQUEST analysis: the human proteome. J Proteome Res4:53–62
    [Google Scholar]
  45. Rosch J. W., Gao G., Ridout G., Wang Y. D., Tuomanen E. I.. 2009; Role of the manganese efflux system mntE for signalling and pathogenesis in Streptococcus pneumoniae . Mol Microbiol72:12–25
    [Google Scholar]
  46. Shah P., Swiatlo E.. 2006; Immunization with polyamine transport protein PotD protects mice against systemic infection with Streptococcus pneumoniae . Infect Immun74:5888–5892
    [Google Scholar]
  47. Shah P., Swiatlo E.. 2008; A multifaceted role for polyamines in bacterial pathogens. Mol Microbiol68:4–16
    [Google Scholar]
  48. Shah P., Marquart M., Quin L. R., Swiatlo E.. 2006; Cellular location of polyamine transport protein PotD in Streptococcus pneumoniae . FEMS Microbiol Lett261:235–237
    [Google Scholar]
  49. Shah P., Romero D. G., Swiatlo E.. 2008; Role of polyamine transport in Streptococcus pneumoniae response to physiological stress and murine septicemia. Microb Pathog45:167–172
    [Google Scholar]
  50. Shah P., Briles D. E., King J., Hale Y., Swiatlo E.. 2009; Mucosal immunization with polyamine transport protein D (PotD) protects mice against nasopharyngeal colonization with Streptococcus pneumoniae . Exp Biol Med (Maywood)234:403–409
    [Google Scholar]
  51. Shelburne S. A. III, Keith D., Horstmann N., Sumby P., Davenport M. T., Graviss E. A., Brennan R. G., Musser J. M.. 2008; A direct link between carbohydrate utilization and virulence in the major human pathogen group A Streptococcus . Proc Natl Acad Sci U S A105:1698–1703
    [Google Scholar]
  52. Smejkal G. B., Robinson M. H., Lawrence N. P., Tao F., Saravis C. A., Schumacher R. T.. 2006; Increased protein yields from Escherichia coli using pressure-cycling technology. J Biomol Tech17:173–175
    [Google Scholar]
  53. Soksawatmaekhin W., Kuraishi A., Sakata K., Kashiwagi K., Igarashi K.. 2004; Excretion and uptake of cadaverine by CadB and its physiological functions in Escherichia coli . Mol Microbiol51:1401–1412
    [Google Scholar]
  54. Somerville G. A., Proctor R. A.. 2009; At the crossroads of bacterial metabolism and virulence factor synthesis in staphylococci. Microbiol Mol Biol Rev73:233–248
    [Google Scholar]
  55. Tabor C. W., Tabor H.. 1985; Polyamines in microorganisms. Microbiol Rev49:81–99
    [Google Scholar]
  56. Tchawa Yimga M., Leatham M. P., Allen J. H., Laux D. C., Conway T., Cohen P. S.. 2006; Role of gluconeogenesis and the tricarboxylic acid cycle in the virulence of Salmonella enterica serovar Typhimurium in BALB/c mice. Infect Immun74:1130–1140
    [Google Scholar]
  57. Tettelin H., Nelson K. E., Paulsen I. T., Eisen J. A., Read T. D., Peterson S., Heidelberg J., DeBoy R. T., Haft D. H.. other authors 2001; Complete genome sequence of a virulent isolate of Streptococcus pneumoniae . Science293:498–506
    [Google Scholar]
  58. Ware D., Watt J., Swiatlo E.. 2005; Utilization of putrescine by Streptococcus pneumoniae during growth in choline-limited medium. J Microbiol43:398–405
    [Google Scholar]
  59. Ware D., Jiang Y., Lin W., Swiatlo E.. 2006; Involvement of potD in Streptococcus pneumoniae polyamine transport and pathogenesis. Infect Immun74:352–361
    [Google Scholar]
  60. Xie Q. W., Tabor C. W., Tabor H.. 1989; Spermidine biosynthesis in Escherichia coli : promoter and termination regions of the speED operon. J Bacteriol171:4457–4465
    [Google Scholar]
  61. Yesilkaya H., Kadioglu A., Gingles N., Alexander J. E., Mitchell T. J., Andrew P. W.. 2000; Role of manganese-containing superoxide dismutase in oxidative stress and virulence of Streptococcus pneumoniae . Infect Immun68:2819–2826
    [Google Scholar]
  62. Yesilkaya H., Manco S., Kadioglu A., Terra V. S., Andrew P. W.. 2008; The ability to utilize mucin affects the regulation of virulence gene expression in Streptococcus pneumoniae . FEMS Microbiol Lett278:231–235
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.042564-0
Loading
/content/journal/micro/10.1099/mic.0.042564-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error