1887

Abstract

Polyamines such as cadaverine, putrescine and spermidine are polycationic molecules that have pleiotropic effects on cells via their interaction with nucleic acids. (the pneumococcus) is a Gram-positive pathogen capable of causing pneumonia, septicaemia, otitis media and meningitis. Pneumococci have a polyamine transport operon () responsible for the binding and transport of putrescine and spermidine, and can synthesize cadaverine and spermidine using their lysine decarboxylase () and spermidine synthase () enzymes. Previous studies from our laboratory have shown that an increase in PotD expression is seen following exposure to various stresses, while during infection, inactivation significantly attenuates pneumococcal virulence, and anti-PotD immune responses are protective in mice. In spite of their relative importance, not much is known about the global contribution of polyamine biosynthesis and transport pathways to pneumococcal disease. Mutants deficient in polyamine biosynthesis (Δ or Δ) or transport genes (Δ) were constructed and were found to be attenuated in murine models of pneumococcal colonization and pneumonia, either alone or in competition with the wild-type strain. The Δ mutant was also attenuated during invasive disease, while the and genes seemed to be dispensable. HPLC analyses showed reduced intracellular polyamine levels in all mutant strains compared with wild-type bacteria. High-throughput proteomic analyses indicated reduced expression of growth, replication and virulence factors in mutant strains. Thus, polyamine biosynthesis and transport mechanisms are intricately linked to the fitness, survival and pathogenesis of the pneumococcus in host microenvironments, and may represent important targets for prophylactic and therapeutic interventions.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.042564-0
2011-02-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/2/504.html?itemId=/content/journal/micro/10.1099/mic.0.042564-0&mimeType=html&fmt=ahah

References

  1. Adrian, P. V., Thomson, C. J., Klugman, K. P. & Amyes, S. G. ( 2000; ). New gene cassettes for trimethoprim resistance, dfr13, and streptomycin–spectinomycin resistance, aadA4, inserted on a class 1 integron. Antimicrob Agents Chemother 44, 355–361.[CrossRef]
    [Google Scholar]
  2. Alteri, C. J., Smith, S. N. & Mobley, H. L. ( 2009; ). Fitness of Escherichia coli during urinary tract infection requires gluconeogenesis and the TCA cycle. PLoS Pathog 5, e1000448.[CrossRef]
    [Google Scholar]
  3. Barelle, C. J., Priest, C. L., Maccallum, D. M., Gow, N. A., Odds, F. C. & Brown, A. J. ( 2006; ). Niche-specific regulation of central metabolic pathways in a fungal pathogen. Cell Microbiol 8, 961–971.[CrossRef]
    [Google Scholar]
  4. Basavanna, S., Khandavilli, S., Yuste, J., Cohen, J. M., Hosie, A. H., Webb, A. J., Thomas, G. H. & Brown, J. S. ( 2009; ). Screening of Streptococcus pneumoniae ABC transporter mutants demonstrates that LivJHMGF, a branched chain amino acid ABC transporter, is necessary for disease pathogenesis. Infect Immun 77, 3412–3423.[CrossRef]
    [Google Scholar]
  5. Benjamini, Y. & Hochberg, Y. ( 1995; ). Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B Stat Methodol 57, 289–300.
    [Google Scholar]
  6. Bower, J. M., Gordon-Raagas, H. B. & Mulvey, M. A. ( 2009; ). Conditioning of uropathogenic Escherichia coli for enhanced colonization of host. Infect Immun 77, 2104–2112.[CrossRef]
    [Google Scholar]
  7. Bricker, A. L. & Camilli, A. ( 1999; ). Transformation of a type 4 encapsulated strain of Streptococcus pneumoniae. FEMS Microbiol Lett 172, 131–135.[CrossRef]
    [Google Scholar]
  8. Bridges, S. M., Magee, G. B., Wang, N., Williams, W. P., Burgess, S. C. & Nanduri, B. ( 2007; ). ProtQuant: a tool for the label-free quantification of MudPIT proteomics data. BMC Bioinformatics 8 (Suppl. 7), S24.
    [Google Scholar]
  9. Briles, D. E., Forman, C., Hudak, S. & Claflin, J. L. ( 1982; ). Anti-phosphorylcholine antibodies of the T15 idiotype are optimally protective against Streptococcus pneumoniae. J Exp Med 156, 1177–1185.[CrossRef]
    [Google Scholar]
  10. Briles, D. E., Hollingshead, S. K., Paton, J. C., Ades, E. W., Novak, L., van Ginkel, F. W. & Benjamin, W. H. ( 2003; ). Immunizations with pneumococcal surface protein A and pneumolysin are protective against pneumonia in a murine model of pulmonary infection with Streptococcus pneumoniae. J Infect Dis 188, 339–348.[CrossRef]
    [Google Scholar]
  11. Chattopadhyay, M. K., Tabor, C. W. & Tabor, H. ( 2003; ). Polyamines protect Escherichia coli cells from the toxic effect of oxygen. Proc Natl Acad Sci U S A 100, 2261–2265.[CrossRef]
    [Google Scholar]
  12. Chattopadhyay, M. K., Tabor, C. W. & Tabor, H. ( 2009; ). Polyamines are not required for aerobic growth of Escherichia coli: preparation of a strain with deletions in all of the genes for polyamine biosynthesis. J Bacteriol 191, 5549–5552.[CrossRef]
    [Google Scholar]
  13. Chou, H. T., Kwon, D. H., Hegazy, M. & Lu, C. D. ( 2008; ). Transcriptome analysis of agmatine and putrescine catabolism in Pseudomonas aeruginosa PAO1. J Bacteriol 190, 1966–1975.[CrossRef]
    [Google Scholar]
  14. Dagan, R. ( 2000; ). Treatment of acute otitis media – challenges in the era of antibiotic resistance. Vaccine 19 (Suppl. 1), S9–S16.[CrossRef]
    [Google Scholar]
  15. Du, M., Flanigan, V. & Ma, Y. ( 2004; ). Simultaneous determination of polyamines and catecholamines in PC-12 tumor cell extracts by capillary electrophoresis with laser-induced fluorescence detection. Electrophoresis 25, 1496–1502.[CrossRef]
    [Google Scholar]
  16. Eng, J. K., McCormack, A. L. & Yates, J. R., III ( 1994; ). An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom 5, 976–989.[CrossRef]
    [Google Scholar]
  17. Fedson, D. S. ( 1999; ). The clinical effectiveness of pneumococcal vaccination: a brief review. Vaccine 17 (Suppl. 1), S85–S90.[CrossRef]
    [Google Scholar]
  18. File, T. M., Jr ( 2004; ). Streptococcus pneumoniae and community-acquired pneumonia: a cause for concern. Am J Med 117 (Suppl. 3A), 39S–50S.[CrossRef]
    [Google Scholar]
  19. Gupta, R., Shah, P. & Swiatlo, E. ( 2009; ). Differential gene expression in Streptococcus pneumoniae in response to various iron sources. Microb Pathog 47, 101–109.[CrossRef]
    [Google Scholar]
  20. Ha, H. C., Sirisoma, N. S., Kuppusamy, P., Zweier, J. L., Woster, P. M. & Casero, R. A., Jr ( 1998; ). The natural polyamine spermine functions directly as a free radical scavenger. Proc Natl Acad Sci U S A 95, 11140–11145.[CrossRef]
    [Google Scholar]
  21. Hassett, D. J., Britigan, B. E., Svendsen, T., Rosen, G. M. & Cohen, M. S. ( 1987; ). Bacteria form intracellular free radicals in response to paraquat and streptonigrin. Demonstration of the potency of hydroxyl radical. J Biol Chem 262, 13404–13408.
    [Google Scholar]
  22. Hava, D. L. & Camilli, A. ( 2002; ). Large-scale identification of serotype 4 Streptococcus pneumoniae virulence factors. Mol Microbiol 45, 1389–1406.
    [Google Scholar]
  23. Huang, S. S., Platt, R., Rifas-Shiman, S. L., Pelton, S. I., Goldmann, D. & Finkelstein, J. A. ( 2005; ). Post-PCV7 changes in colonizing pneumococcal serotypes in 16 Massachusetts communities, 2001 and 2004. Pediatrics 116, e408–e413.[CrossRef]
    [Google Scholar]
  24. Igarashi, K., Ito, K. & Kashiwagi, K. ( 2001; ). Polyamine uptake systems in Escherichia coli. Res Microbiol 152, 271–278.[CrossRef]
    [Google Scholar]
  25. Iyer, R. & Camilli, A. ( 2007; ). Sucrose metabolism contributes to in vivo fitness of Streptococcus pneumoniae. Mol Microbiol 66, 1–13.[CrossRef]
    [Google Scholar]
  26. Iyer, R., Baliga, N. S. & Camilli, A. ( 2005; ). Catabolite control protein A (CcpA) contributes to virulence and regulation of sugar metabolism in Streptococcus pneumoniae. J Bacteriol 187, 8340–8349.[CrossRef]
    [Google Scholar]
  27. Jung, I. L. & Kim, I. G. ( 2003a; ). Polyamines reduce paraquat-induced soxS and its regulon expression in Escherichia coli. Cell Biol Toxicol 19, 29–41.[CrossRef]
    [Google Scholar]
  28. Jung, I. L. & Kim, I. G. ( 2003b; ). Polyamines and glutamate decarboxylase-based acid resistance in Escherichia coli. J Biol Chem 278, 22846–22852.[CrossRef]
    [Google Scholar]
  29. Kadioglu, A., Weiser, J. N., Paton, J. C. & Andrew, P. W. ( 2008; ). The role of Streptococcus pneumoniae virulence factors in host respiratory colonization and disease. Nat Rev Microbiol 6, 288–301.[CrossRef]
    [Google Scholar]
  30. Khan, A. U., Di Mascio, P., Medeiros, M. H. & Wilson, T. ( 1992; ). Spermine and spermidine protection of plasmid DNA against single-strand breaks induced by singlet oxygen. Proc Natl Acad Sci U S A 89, 11428–11430.[CrossRef]
    [Google Scholar]
  31. Lau, P. C., Sung, C. K., Lee, J. H., Morrison, D. A. & Cvitkovitch, D. G. ( 2002; ). PCR ligation mutagenesis in transformable streptococci: application and efficiency. J Microbiol Methods 49, 193–205.[CrossRef]
    [Google Scholar]
  32. Lee, J., Sperandio, V., Frantz, D. E., Longgood, J., Camilli, A., Phillips, M. A. & Michael, A. J. ( 2009; ). An alternative polyamine biosynthetic pathway is widespread in bacteria and essential for biofilm formation in Vibrio cholerae. J Biol Chem 284, 9899–9907.[CrossRef]
    [Google Scholar]
  33. López-Ferrer, D., Martinez-Bartolome, S., Villar, M., Campillos, M., Martin-Maroto, F. & Vazquez, J. ( 2004; ). Statistical model for large-scale peptide identification in databases from tandem mass spectra using SEQUEST. Anal Chem 76, 6853–6860.[CrossRef]
    [Google Scholar]
  34. MacCoss, M. J., Wu, C. C. & Yates, J. R., III ( 2002; ). Probability-based validation of protein identifications using a modified SEQUEST algorithm. Anal Chem 74, 5593–5599.[CrossRef]
    [Google Scholar]
  35. Manco, S., Hernon, F., Yesilkaya, H., Paton, J. C., Andrew, P. W. & Kadioglu, A. ( 2006; ). Pneumococcal neuraminidases A and B both have essential roles during infection of the respiratory tract and sepsis. Infect Immun 74, 4014–4020.[CrossRef]
    [Google Scholar]
  36. McCullers, J. A. & Tuomanen, E. I. ( 2001; ). Molecular pathogenesis of pneumococcal pneumonia. Front Biosci 6, D877–D889.[CrossRef]
    [Google Scholar]
  37. Muñoz-Elías, E. J. & McKinney, J. D. ( 2005; ). Mycobacterium tuberculosis isocitrate lyases 1 and 2 are jointly required for in vivo growth and virulence. Nat Med 11, 638–644.[CrossRef]
    [Google Scholar]
  38. Naderer, T., Ellis, M. A., Sernee, M. F., De Souza, D. P., Curtis, J., Handman, E. & McConville, M. J. ( 2006; ). Virulence of Leishmania major in macrophages and mice requires the gluconeogenic enzyme fructose-1,6-bisphosphatase. Proc Natl Acad Sci U S A 103, 5502–5507.[CrossRef]
    [Google Scholar]
  39. Nanduri, B., Shah, P., Ramkumar, M., Allen, E. B., Swiatlo, E., Burgess, S. C. & Lawrence, M. L. ( 2008; ). Quantitative analysis of Streptococcus pneumoniae TIGR4 response to in vitro iron restriction by 2-D LC ESI MS/MS. Proteomics 8, 2104–2114.[CrossRef]
    [Google Scholar]
  40. O'Brien, K. L. & Nohynek, H. ( 2003; ). Report from a WHO Working Group: standard method for detecting upper respiratory carriage of Streptococcus pneumoniae. Pediatr Infect Dis J 22, e1–e11.
    [Google Scholar]
  41. Old, W. M., Meyer-Arendt, K., Aveline-Wolf, L., Pierce, K. G., Mendoza, A., Sevinsky, J. R., Resing, K. A. & Ahn, N. G. ( 2005; ). Comparison of label-free methods for quantifying human proteins by shotgun proteomics. Mol Cell Proteomics 4, 1487–1502.[CrossRef]
    [Google Scholar]
  42. Polissi, A., Pontiggia, A., Feger, G., Altieri, M., Mottl, H., Ferrari, L. & Simon, D. ( 1998; ). Large-scale identification of virulence genes from Streptococcus pneumoniae. Infect Immun 66, 5620–5629.
    [Google Scholar]
  43. Potter, A. J., Kidd, S. P., McEwan, A. G. & Paton, J. C. ( 2010; ). The MerR/NmlR family transcription factor of Streptococcus pneumoniae responds to carbonyl stress and modulates hydrogen peroxide production. J Bacteriol 192, 4063–4066.[CrossRef]
    [Google Scholar]
  44. Qian, W. J., Liu, T., Monroe, M. E., Strittmatter, E. F., Jacobs, J. M., Kangas, L. J., Petritis, K., Camp, D. G., II & Smith, R. D. ( 2005; ). Probability-based evaluation of peptide and protein identifications from tandem mass spectrometry and SEQUEST analysis: the human proteome. J Proteome Res 4, 53–62.[CrossRef]
    [Google Scholar]
  45. Rosch, J. W., Gao, G., Ridout, G., Wang, Y. D. & Tuomanen, E. I. ( 2009; ). Role of the manganese efflux system mntE for signalling and pathogenesis in Streptococcus pneumoniae. Mol Microbiol 72, 12–25.[CrossRef]
    [Google Scholar]
  46. Shah, P. & Swiatlo, E. ( 2006; ). Immunization with polyamine transport protein PotD protects mice against systemic infection with Streptococcus pneumoniae. Infect Immun 74, 5888–5892.[CrossRef]
    [Google Scholar]
  47. Shah, P. & Swiatlo, E. ( 2008; ). A multifaceted role for polyamines in bacterial pathogens. Mol Microbiol 68, 4–16.[CrossRef]
    [Google Scholar]
  48. Shah, P., Marquart, M., Quin, L. R. & Swiatlo, E. ( 2006; ). Cellular location of polyamine transport protein PotD in Streptococcus pneumoniae. FEMS Microbiol Lett 261, 235–237.[CrossRef]
    [Google Scholar]
  49. Shah, P., Romero, D. G. & Swiatlo, E. ( 2008; ). Role of polyamine transport in Streptococcus pneumoniae response to physiological stress and murine septicemia. Microb Pathog 45, 167–172.[CrossRef]
    [Google Scholar]
  50. Shah, P., Briles, D. E., King, J., Hale, Y. & Swiatlo, E. ( 2009; ). Mucosal immunization with polyamine transport protein D (PotD) protects mice against nasopharyngeal colonization with Streptococcus pneumoniae. Exp Biol Med (Maywood) 234, 403–409.[CrossRef]
    [Google Scholar]
  51. Shelburne, S. A., III, Keith, D., Horstmann, N., Sumby, P., Davenport, M. T., Graviss, E. A., Brennan, R. G. & Musser, J. M. ( 2008; ). A direct link between carbohydrate utilization and virulence in the major human pathogen group A Streptococcus. Proc Natl Acad Sci U S A 105, 1698–1703.[CrossRef]
    [Google Scholar]
  52. Smejkal, G. B., Robinson, M. H., Lawrence, N. P., Tao, F., Saravis, C. A. & Schumacher, R. T. ( 2006; ). Increased protein yields from Escherichia coli using pressure-cycling technology. J Biomol Tech 17, 173–175.
    [Google Scholar]
  53. Soksawatmaekhin, W., Kuraishi, A., Sakata, K., Kashiwagi, K. & Igarashi, K. ( 2004; ). Excretion and uptake of cadaverine by CadB and its physiological functions in Escherichia coli. Mol Microbiol 51, 1401–1412.[CrossRef]
    [Google Scholar]
  54. Somerville, G. A. & Proctor, R. A. ( 2009; ). At the crossroads of bacterial metabolism and virulence factor synthesis in staphylococci. Microbiol Mol Biol Rev 73, 233–248.[CrossRef]
    [Google Scholar]
  55. Tabor, C. W. & Tabor, H. ( 1985; ). Polyamines in microorganisms. Microbiol Rev 49, 81–99.
    [Google Scholar]
  56. Tchawa Yimga, M., Leatham, M. P., Allen, J. H., Laux, D. C., Conway, T. & Cohen, P. S. ( 2006; ). Role of gluconeogenesis and the tricarboxylic acid cycle in the virulence of Salmonella enterica serovar Typhimurium in BALB/c mice. Infect Immun 74, 1130–1140.[CrossRef]
    [Google Scholar]
  57. Tettelin, H., Nelson, K. E., Paulsen, I. T., Eisen, J. A., Read, T. D., Peterson, S., Heidelberg, J., DeBoy, R. T., Haft, D. H. & other authors ( 2001; ). Complete genome sequence of a virulent isolate of Streptococcus pneumoniae. Science 293, 498–506.[CrossRef]
    [Google Scholar]
  58. Ware, D., Watt, J. & Swiatlo, E. ( 2005; ). Utilization of putrescine by Streptococcus pneumoniae during growth in choline-limited medium. J Microbiol 43, 398–405.
    [Google Scholar]
  59. Ware, D., Jiang, Y., Lin, W. & Swiatlo, E. ( 2006; ). Involvement of potD in Streptococcus pneumoniae polyamine transport and pathogenesis. Infect Immun 74, 352–361.[CrossRef]
    [Google Scholar]
  60. Xie, Q. W., Tabor, C. W. & Tabor, H. ( 1989; ). Spermidine biosynthesis in Escherichia coli: promoter and termination regions of the speED operon. J Bacteriol 171, 4457–4465.
    [Google Scholar]
  61. Yesilkaya, H., Kadioglu, A., Gingles, N., Alexander, J. E., Mitchell, T. J. & Andrew, P. W. ( 2000; ). Role of manganese-containing superoxide dismutase in oxidative stress and virulence of Streptococcus pneumoniae. Infect Immun 68, 2819–2826.[CrossRef]
    [Google Scholar]
  62. Yesilkaya, H., Manco, S., Kadioglu, A., Terra, V. S. & Andrew, P. W. ( 2008; ). The ability to utilize mucin affects the regulation of virulence gene expression in Streptococcus pneumoniae. FEMS Microbiol Lett 278, 231–235.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.042564-0
Loading
/content/journal/micro/10.1099/mic.0.042564-0
Loading

Data & Media loading...

Supplements

Tandem MS analysis of TIGR4 and TIGR4 D [PDF](127 KB)

PDF

Tandem MS analysis and differential protein expression in the D strain compared with wild-type TIGR4 [PDF](119 KB)

PDF

Tandem MS analysis and differential protein expression in the D strain compared with wild-type TIGR4 [PDF](91 KB)

PDF

Tandem MS analysis of TIGR4 and TIGR4 D [PDF](136 KB)

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error