1887

Abstract

Polyphenols, ubiquitously present in the food we consume, may modify the gut microbial composition and/or activity, and moreover, may be converted by the colonic microbiota to bioactive compounds that influence host health. The polyphenol content of fruit and vegetables and derived products is implicated in some of the health benefits bestowed on eating fruit and vegetables. Elucidating the mechanisms behind polyphenol metabolism is an important step in understanding their health effects. Yet, this is no trivial assignment due to the diversity encountered in both polyphenols and the gut microbial composition, which is further confounded by the interactions with the host. Only a limited number of studies have investigated the impact of dietary polyphenols on the complex human gut microbiota and these were mainly focused on single polyphenol molecules and selected bacterial populations. Our knowledge of gut microbial genes and pathways for polyphenol bioconversion and interactions is poor. Application of specific or models mimicking the human gut environment is required to analyse these diverse interactions. A particular benefit can now be gained from next-generation analytical tools such as metagenomics and metatranscriptomics allowing a wider, more holistic approach to the analysis of polyphenol metabolism. Understanding the polyphenol–gut microbiota interactions and gut microbial bioconversion capacity will facilitate studies on bioavailability of polyphenols in the host, provide more insight into the health effects of polyphenols and potentially open avenues for modulation of polyphenol bioactivity for host health.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.042127-0
2010-11-01
2019-09-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/11/3224.html?itemId=/content/journal/micro/10.1099/mic.0.042127-0&mimeType=html&fmt=ahah

References

  1. Arakawa, H., Maeda, M., Okubo, S. & Shimamura, T. ( 2004; ). Role of hydrogen peroxide in bactericidal action of catechin. Biol Pharm Bull 27, 277–281.[CrossRef]
    [Google Scholar]
  2. Beloqui, A., Pita, M., Polaina, J., Martínez-Arias, A., Golyshina, O. V., Zumárraga, M., Yakimov, M. M., García-Arellano, H., Alcalde, M. & other authors ( 2006; ). Novel polyphenol oxidase mined from a metagenome expression library of bovine rumen: biochemical properties, structural analysis, and phylogenetic relationships. J Biol Chem 281, 22933–22942.[CrossRef]
    [Google Scholar]
  3. Blaut, M., Schoefer, L. & Braune, A. ( 2003; ). Transformation of flavonoids by intestinal microorganisms. Int J Vitam Nutr Res 73, 79–87.[CrossRef]
    [Google Scholar]
  4. Bolca, S., Wyns, C., Possemiers, S., Depypere, H., De Keukeleire, D., Bracke, M., Verstraete, W. & Heyerick, A. ( 2009; ). Cosupplementation of isoflavones, prenylflavonoids, and lignans alters human exposure to phytoestrogen-derived 17β-estradiol equivalents. J Nutr 139, 2293–2300.[CrossRef]
    [Google Scholar]
  5. Bolca, S., Urpi-Sarda, M., Blondeel, Ph., Roche, N., Vanhaecke, L., Possemiers, S., Al-Maharik, N., Botting, N., Heyerick, A. & other authors ( 2010; ). Disposition of soy isoflavones in normal breast tissue. Am J Clin Nutr 91, 976–984.[CrossRef]
    [Google Scholar]
  6. Bowey, E., Adlercreutz, H. & Rowland, I. ( 2003; ). Metabolism of isoflavones and lignans by the gut microflora: a study in germ-free and human flora associated rats. Food Chem Toxicol 41, 631–636.[CrossRef]
    [Google Scholar]
  7. Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., Fierer, N., Pena, A. G., Goodrich, J. K. & other authors ( 2010; ). QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7, 335–336.[CrossRef]
    [Google Scholar]
  8. Clavel, T., Borrmann, D., Braune, A., Dore, J. & Blaut, M. ( 2006; ). Occurrence and activity of human intestinal bacteria involved in the conversion of dietary lignans. Anaerobe 12, 140–147.[CrossRef]
    [Google Scholar]
  9. Crozier, A., Jaganath, I. B. & Clifford, M. N. ( 2009; ). Dietary phenolics: chemistry, bioavailability and effects on health. Nat Prod Rep 26, 1001–1043.[CrossRef]
    [Google Scholar]
  10. Cushnie, T. P. & Lamb, A. J. ( 2005; ). Antimicrobial activity of flavonoids. Int J Antimicrob Agents 26, 343–356.[CrossRef]
    [Google Scholar]
  11. Denef, V. J., Kalnejais, L. H., Mueller, R. S., Wilmes, P., Baker, B. J., Thomas, B. C., Verberkmoes, N. C., Hettich, R. L. & Banfield, J. F. ( 2010; ). Proteogenomic basis for ecological divergence of closely related bacteria in natural acidophilic microbial communities. Proc Natl Acad Sci U S A 107, 2383–2390.[CrossRef]
    [Google Scholar]
  12. DeSantis, T. Z., Brodie, E. L., Moberg, J. P., Zubieta, I. X., Piceno, Y. M. & Andersen, G. L. ( 2007; ). High-density universal 16S rRNA microarray analysis reveals broader diversity than typical clone library when sampling the environment. Microb Ecol 53, 371–383.[CrossRef]
    [Google Scholar]
  13. Dolara, P., Luceri, C., De, F. C., Femia, A. P., Giovannelli, L., Caderni, G., Cecchini, C., Silvi, S., Orpianesi, C. & other authors ( 2005; ). Red wine polyphenols influence carcinogenesis, intestinal microflora, oxidative damage and gene expression profiles of colonic mucosa in F344 rats. Mutat Res 591, 237–246.[CrossRef]
    [Google Scholar]
  14. Evensen, N. A. & Braun, P. C. ( 2009; ). The effects of tea polyphenols on Candida albicans: inhibition of biofilm formation and proteasome inactivation. Can J Microbiol 55, 1033–1039.[CrossRef]
    [Google Scholar]
  15. Fava, F., Lovegrove, J. A., Gitau, R., Jackson, K. G. & Tuohy, K. M. ( 2006; ). The gut microbiota and lipid metabolism: implications for human health and coronary heart disease. Curr Med Chem 13, 3005–3021.[CrossRef]
    [Google Scholar]
  16. Feng, W. Y. ( 2006; ). Metabolism of green tea catechins: an overview. Curr Drug Metab 7, 755–809.[CrossRef]
    [Google Scholar]
  17. Fleschhut, J., Kratzer, F., Rechkemmer, G. & Kulling, S. E. ( 2006; ). Stability and biotransformation of various dietary anthocyanins in vitro. Eur J Nutr 45, 7–18.[CrossRef]
    [Google Scholar]
  18. Gross, G., Jacobs, D. M., Peters, S., Possemiers, S., van Duynhoven, J. P. M., Vaughan, E. E. & van de Wiele, T. ( 2010; ). In vitro bioconversion of polyphenols from black tea and red wine/grape juice by human intestinal microbiota displays strong inter-individual variability. J Agric Food Chem (in press ). doi: 10.1021/jf101475m
    [Google Scholar]
  19. Herles, C., Braune, A. & Blaut, M. ( 2004; ). First bacterial chalcone isomerase isolated from Eubacterium ramulus. Arch Microbiol 181, 428–434.[CrossRef]
    [Google Scholar]
  20. Hirayama, K. & Itoh, K. ( 2005; ). Human flora-associated (HFA) animals as a model for studying the role of intestinal flora in human health and disease. Curr Issues Intest Microbiol 6, 69–75.
    [Google Scholar]
  21. Kumazawa, S., Kajiya, K., Naito, A., Saito, H., Tuzi, S., Tanio, M., Suzuki, M., Nanjo, F., Suzuki, E. & other authors ( 2004; ). Direct evidence of interaction of a green tea polyphenol, epigallocatechin gallate, with lipid bilayers by solid-state Nuclear Magnetic Resonance. Biosci Biotechnol Biochem 68, 1743–1747.[CrossRef]
    [Google Scholar]
  22. Lampe, J. W. ( 2009; ). Interindividual differences in response to plant-based diets: implications for cancer risk. Am J Clin Nutr 89, 1553S–1557S.[CrossRef]
    [Google Scholar]
  23. Lhoste, E. F., Ouriet, V., Bruel, S., Flinois, J. P., Brezillon, C., Magdalou, J., Cheze, C. & Nugon-Baudon, L. ( 2003; ). The human colonic microflora influences the alterations of xenobiotic-metabolizing enzymes by catechins in male F344 rats. Food Chem Toxicol 41, 695–702.[CrossRef]
    [Google Scholar]
  24. Li, M., Wang, B., Zhang, M., Rantalainen, M., Wang, S., Zhou, H., Zhang, Y., Shen, J., Pang, X. & other authors ( 2008; ). Symbiotic gut microbes modulate human metabolic phenotypes. Proc Natl Acad Sci U S A 105, 2117–2122.[CrossRef]
    [Google Scholar]
  25. Macfarlane, G. T., Macfarlane, S. & Gibson, G. R. ( 1998; ). Validation of a three-stage compound continuous culture system for investigating the effect of retention time on the ecology and metabolism of bacteria in the human colon. Microb Ecol 35, 180–187.[CrossRef]
    [Google Scholar]
  26. Manach, C., Scalbert, A., Morand, C., Remesy, C. & Jimenez, L. ( 2004; ). Polyphenols: food sources and bioavailability. Am J Clin Nutr 79, 727–747.
    [Google Scholar]
  27. Manach, C., Hubert, J., Llorach, R. & Scalbert, A. ( 2009; ). The complex links between dietary phytochemicals and human health deciphered by metabolomics. Mol Nutr Food Res 53, 1303–1315.[CrossRef]
    [Google Scholar]
  28. Manichanh, C., Rigottier-Gois, L., Bonnaud, E., Gloux, K., Pelletier, E., Frangeul, L., Nalin, R., Jarrin, C., Chardon, P. & other authors ( 2006; ). Reduced diversity of faecal microbiota in Crohn's disease revealed by a metagenomic approach. Gut 55, 205–211.[CrossRef]
    [Google Scholar]
  29. Minekus, M., Smeets-Peeters, M., Bernalier, A., Marol-Bonnin, S., Havenaar, R., Marteau, P., Alric, M., Fonty, G. & Veld, J. H. J. H. ( 1999; ). A computer-controlled system to simulate conditions of the large intestine with peristaltic mixing, water absorption and absorption of fermentation products. Appl Microbiol Biotechnol 53, 108–114.[CrossRef]
    [Google Scholar]
  30. Molly, K., Woestyne, M. V. & Verstraete, W. ( 1993; ). Development of a 5-step multichamber reactor as a simulation of the human intestinal microbial ecosystem. Appl Microbiol Biotechnol 39, 254–258.[CrossRef]
    [Google Scholar]
  31. Nadkarni, M. A., Martin, F. E., Jacques, N. A. & Hunter, N. ( 2002; ). Determination of bacterial load by real-time PCR using a broad-range (universal) probe and primers set. Microbiology 148, 257–266.
    [Google Scholar]
  32. Navarro-Martínez, M. D., Navarro-Péran, E., Cabezas-Herrera, J., Ruiz-Gómez, J., Garcia-Cánovas, F. & Rodríguez-López, J. N. ( 2005; ). Antifolate activity of epigallocatechin gallate against Stenotrophomonas maltophilia. Antimicrob Agents Chemother 49, 2914–2920.[CrossRef]
    [Google Scholar]
  33. Pérez-Jiménez, J., Neveu, V., Vos, F. & Scalbert, A. ( 2010; ). Systematic analysis of the content of 502 polyphenols in 452 foods and beverages: an application of the phenol-explorer database. J Agric Food Chem 58, 4959–4969.[CrossRef]
    [Google Scholar]
  34. Possemiers, S., Rabot, S., Espín, J. C., Bruneau, A., Philippe, C., González-Sarrías, A., Heyerick, A., Tomás-Barberán, F. A., De Kukeleire, D. & Verstraete, W. ( 2008; ). Eubacterium limosum activates isoxanthohumol from hops (Humulus lupulus L.) into the potent phytoestrogen 8-prenylnaringenin in vitro and in rat intestine. J Nutr 138, 1310–1316.
    [Google Scholar]
  35. Qin, J., Li, R., Raes, J., Arumugam, M., Burgdorf, K. S., Manichanh, C., Nielsen, T., Pons, N., Levenez, F. & other authors ( 2010; ). A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65.[CrossRef]
    [Google Scholar]
  36. Rajilić-Stojanović, M., Heilig, H. G., Molenaar, D., Kajander, K., Surakka, A., Smidt, H. & de Vos, W. M. ( 2009; ). Development and application of the human intestinal tract chip, a phylogenetic microarray: analysis of universally conserved phylotypes in the abundant microbiota of young and elderly adults. Environ Microbiol 11, 1736–1751.[CrossRef]
    [Google Scholar]
  37. Romier, B., Schneider, Y. J., Larondelle, Y. & During, A. ( 2009; ). Dietary polyphenols can modulate the intestinal inflammatory response. Nutr Rev 67, 363–378.[CrossRef]
    [Google Scholar]
  38. Schoefer, L., Braune, A. & Blaut, M. ( 2004; ). Cloning and expression of a phloretin hydrolase gene from Eubacterium ramulus and characterization of the recombinant enzyme. Appl Environ Microbiol 70, 6131–6137.[CrossRef]
    [Google Scholar]
  39. Selma, M. V., Espin, J. C. & Tomás-Barberán, F. A. ( 2009; ). Interaction between phenolics and gut microbiota: role in human health. J Agric Food Chem 57, 6485–6501.[CrossRef]
    [Google Scholar]
  40. Sirk, T. W., Brown, E. F., Friedman, M. & Sum, A. K. ( 2009; ). Molecular binding of catechins to biomembranes: relationship to biological activity. J Agric Food Chem 57, 6720–6728.[CrossRef]
    [Google Scholar]
  41. Smith, A. H., Zoetendal, E. & Mackie, R. I. ( 2005; ). Bacterial mechanisms to overcome inhibitory effects of dietary tannins. Microb Ecol 50, 197–205.[CrossRef]
    [Google Scholar]
  42. Stapleton, P. D., Shah, S., Ehlert, K., Hara, Y. & Taylor, P. W. ( 2007; ). The beta-lactam-resistance modifier (−)-epicatechin gallate alters the architecture of the cell wall of Staphylococcus aureus. Microbiology 153, 2093–2103.[CrossRef]
    [Google Scholar]
  43. Steiner, C., Arnould, S., Scalbert, A. & Manach, C. ( 2008; ). Isoflavones and the prevention of breast and prostate cancer: new perspectives opened by nutrigenomics. Br J Nutr 99, ES78–ES108.
    [Google Scholar]
  44. Turnbaugh, P. J. & Gordon, J. I. ( 2009; ). The core gut microbiome, energy balance and obesity. J Physiol 587, 4153–4158.[CrossRef]
    [Google Scholar]
  45. Tzounis, X., Vulevic, J., Kuhnle, G. G., George, T., Leonczak, J., Gibson, G. R., Kwik-Uribe, C. & Spencer, J. P. ( 2008; ). Flavanol monomer-induced changes to the human faecal microflora. Br J Nutr 99, 782–792.
    [Google Scholar]
  46. van Dorsten, F. A., Grün, C. H., van Velzen, E. J. J., Jacobs, D. M., Draijer, R. & van Duynhoven, J. P. M. ( 2010; ). The metabolic fate of red wine and grape juice polyphenols in humans assessed by metabolomics. Mol Nutr Food Res 54, 897–908.
    [Google Scholar]
  47. van Duynhoven, J. P., Vaughan, E. E., Jacobs, M., Kemperman, R. A., van Velzen, E. J., Gross, G., Roger, L. C., Possemiers, S., Smilde, A. K. & other authors ( 2010; ). Microbes and health sackler colloquium: metabolic fate of polyphenols in the human superorganism. Proc Natl Acad Sci U S A (in press). doi: 10.1073/pnas.1000098107
    [Google Scholar]
  48. van Velzen, E. J., Westerhuis, J. A., van Duynhoven, J. P., van Dorsten, F. A., Grun, C. H., Jacobs, D. M., Duchateau, G. S., Vis, D. J. & Smilde, A. K. ( 2009; ). Phenotyping tea consumers by nutrikinetic analysis of polyphenolic end-metabolites. J Proteome Res 8, 3317–3330.[CrossRef]
    [Google Scholar]
  49. Verberkmoes, N. C., Russell, A. L., Shah, M., Godzik, A., Rosenquist, M., Halfvarson, J., Lefsrud, M. G., Apajalahti, J., Tysk, C. & other authors ( 2009; ). Shotgun metaproteomics of the human distal gut microbiota. ISME J 3, 179–189.[CrossRef]
    [Google Scholar]
  50. Wang, W. B., Lai, H. C., Hsueh, P. R., Chiou, R. Y., Lin, S. B. & Liaw, S. J. ( 2006; ). Inhibition of swarming and virulence factor expression in Proteus mirabilis by resveratrol. J Med Microbiol 55, 1313–1321.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.042127-0
Loading
/content/journal/micro/10.1099/mic.0.042127-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error