1887

Abstract

Many genes in and are under the control of the transcriptional regulator PlcR and its regulatory peptide, PapR. In , the causative agent of anthrax, PlcR is inactivated by truncation, and consequently genes having PlcR binding sites are expressed at very low levels when compared with . We found that activation of the PlcR regulon in by expression of a PlcR–PapR fusion protein does not alter sporulation in strains containing the virulence plasmid pXO1 and thereby the global regulator AtxA. Using comparative 2D gel electrophoresis, we showed that activation of the PlcR regulon in leads to upregulation of many proteins found in the secretome of , including phospholipases and proteases, such as the putative protease BA1995. Transcriptional analysis demonstrated expression of BA1995 to be dependent on PlcR–PapR, even though the putative PlcR recognition site of the BA1995 gene does not exactly match the PlcR consensus sequence, explaining why this protein had escaped recognition as belonging to the PlcR regulon. Additionally, while transcription of major PlcR-dependent haemolysins, sphingomyelinase and anthrolysin O is enhanced in response to PlcR activation in , only anthrolysin O contributes significantly to lysis of human erythrocytes. In contrast, the toxicity of bacterial culture supernatants from a PlcR-positive strain towards murine macrophages occurred independently of anthrolysin O expression and .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.041418-0
2010-10-01
2020-07-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/10/2982.html?itemId=/content/journal/micro/10.1099/mic.0.041418-0&mimeType=html&fmt=ahah

References

  1. Agaisse H., Gominet M., Okstad O. A., Kolstø A. B., Lereclus D.. 1999; PlcR is a pleiotropic regulator of extracellular virulence factor gene expression in Bacillus thuringiensis. Mol Microbiol32:1043–1053
    [Google Scholar]
  2. Beecher D. J., Wong A. C.. 2000; Cooperative, synergistic and antagonistic haemolytic interactions between haemolysin BL, phosphatidylcholine phospholipase C and sphingomyelinase from Bacillus cereus. Microbiology146:3033–3039
    [Google Scholar]
  3. Bouillaut L., Perchat S., Arold S., Zorrilla S., Slamti L., Henry C., Gohar M., Declerck N., Lereclus D.. 2008; Molecular basis for group-specific activation of the virulence regulator PlcR by PapR heptapeptides. Nucleic Acids Res36:3791–3801
    [Google Scholar]
  4. Burdon K. L.. 1956; Useful criteria for the identification of Bacillus anthracis and related species. J Bacteriol71:25–42
    [Google Scholar]
  5. Chitlaru T., Gat O., Gozlan Y., Ariel N., Shafferman A.. 2006; Differential proteomic analysis of the Bacillus anthracis secretome: distinct plasmid and chromosome CO2-dependent cross talk mechanisms modulate extracellular proteolytic activities. J Bacteriol188:3551–3571
    [Google Scholar]
  6. Dai Z., Koehler T. M.. 1997; Regulation of anthrax toxin activator gene ( atxA) expression in Bacillus anthracis: temperature, not CO2/bicarbonate, affects AtxA synthesis. Infect Immun65:2576–2582
    [Google Scholar]
  7. Drobniewski F. A.. 1993; Bacillus cereus and related species. Clin Microbiol Rev6:324–338
    [Google Scholar]
  8. Emanuelsson O., Brunak S., von Heijne G., Nielsen H.. 2007; Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc2:953–971
    [Google Scholar]
  9. Fedhila S., Gohar M., Slamti L., Nel P., Lereclus D.. 2003; The Bacillus thuringiensis PlcR-regulated gene inhA2 is necessary, but not sufficient, for virulence. J Bacteriol185:2820–2825
    [Google Scholar]
  10. Gardy J. L., Laird M. R., Chen F., Rey S., Walsh C. J., Ester M., Brinkman F. S.. 2005; PSORTb v.2.0: expanded prediction of bacterial protein subcellular localization and insights gained from comparative proteome analysis. Bioinformatics21:617–623
    [Google Scholar]
  11. Gohar M., Okstad O. A., Gilois N., Sanchis V., Kolstø A. B., Lereclus D.. 2002; Two-dimensional electrophoresis analysis of the extracellular proteome of Bacillus cereus reveals the importance of the PlcR regulon. Proteomics2:784–791
    [Google Scholar]
  12. Gohar M., Gilois N., Graveline R., Garreau C., Sanchis V., Lereclus D.. 2005; A comparative study of Bacillus cereus, Bacillus thuringiensis and Bacillus anthracis extracellular proteomes. Proteomics5:3696–3711
    [Google Scholar]
  13. Gohar M., Faegri K., Perchat S., Ravnum S., Okstad O. A., Gominet M., Kolstø A. B., Lereclus D.. 2008; The PlcR virulence regulon of Bacillus cereus. PLoS ONE3:e2793
    [Google Scholar]
  14. Helgason E., Okstad O. A., Caugant D. A., Johansen H. A., Fouet A., Mock M., Hegna I., Kolstø A. B.. 2000; Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis – one species on the basis of genetic evidence. Appl Environ Microbiol66:2627–2630
    [Google Scholar]
  15. Hoffmaster A. R., Ravel J., Rasko D. A., Chapman G. D., Chute M. D., Marston C. K., De B. K., Sacchi C. T., Fitzgerald C.. other authors 2004; Identification of anthrax toxin genes in a Bacillus cereus associated with an illness resembling inhalation anthrax. Proc Natl Acad Sci U S A101:8449–8454
    [Google Scholar]
  16. Hoffmaster A. R., Hill K. K., Gee J. E., Marston C. K., De B. K., Popovic T., Sue D., Wilkins P. P., Avashia S. B.. other authors 2006; Characterization of Bacillus cereus isolates associated with fatal pneumonias: strains are closely related to Bacillus anthracis and harbor B. anthracis virulence genes. J Clin Microbiol44:3352–3360
    [Google Scholar]
  17. Ikezawa H., Mori M., Taguchi R.. 1980; Studies on sphingomyelinase of Bacillus cereus: hydrolytic and hemolytic actions on erythrocyte membranes. Arch Biochem Biophys199:572–578
    [Google Scholar]
  18. Ivanova N., Sorokin A., Anderson I., Galleron N., Candelon B., Kapatral V., Bhattacharyya A., Reznik G., Mikhailova N.. other authors 2003; Genome sequence of Bacillus cereus and comparative analysis with Bacillus anthracis. Nature423:87–91
    [Google Scholar]
  19. Ivins B. E., Ezzell J. W., Jemski J., Hedlund K. W., Ristroph J. D., Leppla S. H.. 1986; Immunization studies with attenuated strains of Bacillus anthracis. Infect Immun52:454–458
    [Google Scholar]
  20. Klee S. R., Ozel M., Appel B., Boesch C., Ellerbrok H., Jacob D., Holland G., Leendertz F. H., Pauli G.. other authors 2006; Characterization of Bacillus anthracis-like bacteria isolated from wild great apes from Côte d'Ivoire and Cameroon. J Bacteriol188:5333–5344
    [Google Scholar]
  21. Klichko V. I., Miller J., Wu A., Popov S. G., Alibek K.. 2003; Anaerobic induction of Bacillus anthracis hemolytic activity. Biochem Biophys Res Commun303:855–862
    [Google Scholar]
  22. Kolstø A. B., Tourasse N. J., Okstad O. A.. 2009; What sets Bacillus anthracis apart from other Bacillus species?. Annu Rev Microbiol63:451–476
    [Google Scholar]
  23. Leppla S. H.. 1988; Production and purification of anthrax toxin. Methods Enzymol165:103–116
    [Google Scholar]
  24. Lereclus D., Agaisse H., Gominet M., Salamitou S., Sanchis V.. 1996; Identification of a Bacillus thuringiensis gene that positively regulates transcription of the phosphatidylinositol-specific phospholipase C gene at the onset of the stationary phase. J Bacteriol178:2749–2756
    [Google Scholar]
  25. Lund T., Granum P. E.. 1996; Characterisation of a non-haemolytic enterotoxin complex from Bacillus cereus isolated after a foodborne outbreak. FEMS Microbiol Lett141:151–156
    [Google Scholar]
  26. Makarova K. S., Aravind L., Koonin E. V.. 1999; A superfamily of archaeal, bacterial, and eukaryotic proteins homologous to animal transglutaminases. Protein Sci8:1714–1719
    [Google Scholar]
  27. McAllister R. D., Singh Y., Du Bois W. D., Potter M., Boehm T., Meeker N. D., Fillmore P. D., Anderson L. M., Poynter M. E.. other authors 2003; Susceptibility to anthrax lethal toxin is controlled by three linked quantitative trait loci. Am J Pathol163:1735–1741
    [Google Scholar]
  28. Mendelson I., Tobery S., Scorpio A., Bozue J., Shafferman A., Friedlander A. M.. 2004; The NheA component of the non-hemolytic enterotoxin of Bacillus cereus is produced by Bacillus anthracis but is not required for virulence. Microb Pathog37:149–154
    [Google Scholar]
  29. Mignot T., Mock M., Robichon D., Landier A., Lereclus D., Fouet A.. 2001; The incompatibility between the PlcR- and AtxA-controlled regulons may have selected a nonsense mutation in Bacillus anthracis. Mol Microbiol42:1189–1198
    [Google Scholar]
  30. Mikesell P., Ivins B. E., Ristroph J. D., Dreier T. M.. 1983; Evidence for plasmid-mediated toxin production in Bacillus anthracis. Infect Immun39:371–376
    [Google Scholar]
  31. Mock M., Fouet A.. 2001; Anthrax. Annu Rev Microbiol55:647–671
    [Google Scholar]
  32. Mosser E. M., Rest R. F.. 2006; The Bacillus anthracis cholesterol-dependent cytolysin, anthrolysin O, kills human neutrophils, monocytes and macrophages. BMC Microbiol6:56
    [Google Scholar]
  33. Okstad O. A., Gominet M., Purnelle B., Rose M., Lereclus D., Kolstø A. B.. 1999; Sequence analysis of three Bacillus cereus loci carrying PlcR-regulated genes encoding degradative enzymes and enterotoxin. Microbiology145:3129–3138
    [Google Scholar]
  34. Park S., Leppla S. H.. 2000; Optimized production and purification of Bacillus anthracis lethal factor. Protein Expr Purif18:293–302
    [Google Scholar]
  35. Passalacqua K. D., Varadarajan A., Byrd B., Bergman N. H.. 2009; Comparative transcriptional profiling of Bacillus cereus sensu lato strains during growth in CO2–bicarbonate and aerobic atmospheres. PLoS ONE4:e4904
    [Google Scholar]
  36. Pomerantsev A. P., Kalnin K. V., Osorio M., Leppla S. H.. 2003; Phosphatidylcholine-specific phospholipase C and sphingomyelinase activities in bacteria of the Bacillus cereus group. Infect Immun71:6591–6606
    [Google Scholar]
  37. Pomerantsev A. P., Pomerantseva O. M., Leppla S. H.. 2004; A spontaneous translational fusion of Bacillus cereus PlcR and PapR activates transcription of PlcR-dependent genes in Bacillus anthracis via binding with a specific palindromic sequence. Infect Immun72:5814–5823
    [Google Scholar]
  38. Pomerantsev A. P., Camp A., Leppla S. H.. 2009; A new minimal replicon of Bacillus anthracis plasmid pXO1. J Bacteriol191:5134–5146
    [Google Scholar]
  39. Rasko D. A., Altherr M. R., Han C. S., Ravel J.. 2005; Genomics of the Bacillus cereus group of organisms. FEMS Microbiol Rev29:303–329
    [Google Scholar]
  40. Read T. D., Peterson S. N., Tourasse N., Baillie L. W., Paulsen I. T., Nelson K. E., Tettelin H., Fouts D. E., Eisen J. A.. other authors 2003; The genome sequence of Bacillus anthracis Ames and comparison to closely related bacteria. Nature423:81–86
    [Google Scholar]
  41. Reddy A., Battisti L., Thorne C. B.. 1987; Identification of self-transmissible plasmids in four Bacillus thuringiensis subspecies. J Bacteriol169:5263–5270
    [Google Scholar]
  42. Ross C. L., Koehler T. M.. 2006; plcR papR-independent expression of anthrolysin O by Bacillus anthracis. J Bacteriol188:7823–7829
    [Google Scholar]
  43. Sastalla I., Chim K., Cheung G. Y., Pomerantsev A. P., Leppla S. H.. 2009; Codon-optimized fluorescent proteins designed for expression in low-GC Gram-positive bacteria. Appl Environ Microbiol75:2099–2110
    [Google Scholar]
  44. Shannon J. G., Ross C. L., Koehler T. M., Rest R. F.. 2003; Characterization of anthrolysin O, the Bacillus anthracis cholesterol-dependent cytolysin. Infect Immun71:3183–3189
    [Google Scholar]
  45. Slamti L., Perchat S., Gominet M., Vilas-Boas G., Fouet A., Mock M., Sanchis V., Chaufaux J., Gohar M.. other authors 2004; Distinct mutations in PlcR explain why some strains of the Bacillus cereus group are nonhemolytic. J Bacteriol186:3531–3538
    [Google Scholar]
  46. Tweten R. K.. 2005; Cholesterol-dependent cytolysins, a family of versatile pore-forming toxins. Infect Immun73:6199–6209
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.041418-0
Loading
/content/journal/micro/10.1099/mic.0.041418-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error