1887

Abstract

Many genes in and are under the control of the transcriptional regulator PlcR and its regulatory peptide, PapR. In , the causative agent of anthrax, PlcR is inactivated by truncation, and consequently genes having PlcR binding sites are expressed at very low levels when compared with . We found that activation of the PlcR regulon in by expression of a PlcR–PapR fusion protein does not alter sporulation in strains containing the virulence plasmid pXO1 and thereby the global regulator AtxA. Using comparative 2D gel electrophoresis, we showed that activation of the PlcR regulon in leads to upregulation of many proteins found in the secretome of , including phospholipases and proteases, such as the putative protease BA1995. Transcriptional analysis demonstrated expression of BA1995 to be dependent on PlcR–PapR, even though the putative PlcR recognition site of the BA1995 gene does not exactly match the PlcR consensus sequence, explaining why this protein had escaped recognition as belonging to the PlcR regulon. Additionally, while transcription of major PlcR-dependent haemolysins, sphingomyelinase and anthrolysin O is enhanced in response to PlcR activation in , only anthrolysin O contributes significantly to lysis of human erythrocytes. In contrast, the toxicity of bacterial culture supernatants from a PlcR-positive strain towards murine macrophages occurred independently of anthrolysin O expression and .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.041418-0
2010-10-01
2024-11-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/10/2982.html?itemId=/content/journal/micro/10.1099/mic.0.041418-0&mimeType=html&fmt=ahah

References

  1. Agaisse H., Gominet M., Okstad O. A., Kolstø A. B., Lereclus D. 1999; PlcR is a pleiotropic regulator of extracellular virulence factor gene expression in Bacillus thuringiensis. Mol Microbiol 32:1043–1053
    [Google Scholar]
  2. Beecher D. J., Wong A. C. 2000; Cooperative, synergistic and antagonistic haemolytic interactions between haemolysin BL, phosphatidylcholine phospholipase C and sphingomyelinase from Bacillus cereus. Microbiology 146:3033–3039
    [Google Scholar]
  3. Bouillaut L., Perchat S., Arold S., Zorrilla S., Slamti L., Henry C., Gohar M., Declerck N., Lereclus D. 2008; Molecular basis for group-specific activation of the virulence regulator PlcR by PapR heptapeptides. Nucleic Acids Res 36:3791–3801
    [Google Scholar]
  4. Burdon K. L. 1956; Useful criteria for the identification of Bacillus anthracis and related species. J Bacteriol 71:25–42
    [Google Scholar]
  5. Chitlaru T., Gat O., Gozlan Y., Ariel N., Shafferman A. 2006; Differential proteomic analysis of the Bacillus anthracis secretome: distinct plasmid and chromosome CO2-dependent cross talk mechanisms modulate extracellular proteolytic activities. J Bacteriol 188:3551–3571
    [Google Scholar]
  6. Dai Z., Koehler T. M. 1997; Regulation of anthrax toxin activator gene ( atxA) expression in Bacillus anthracis: temperature, not CO2/bicarbonate, affects AtxA synthesis. Infect Immun 65:2576–2582
    [Google Scholar]
  7. Drobniewski F. A. 1993; Bacillus cereus and related species. Clin Microbiol Rev 6:324–338
    [Google Scholar]
  8. Emanuelsson O., Brunak S., von Heijne G., Nielsen H. 2007; Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2:953–971
    [Google Scholar]
  9. Fedhila S., Gohar M., Slamti L., Nel P., Lereclus D. 2003; The Bacillus thuringiensis PlcR-regulated gene inhA2 is necessary, but not sufficient, for virulence. J Bacteriol 185:2820–2825
    [Google Scholar]
  10. Gardy J. L., Laird M. R., Chen F., Rey S., Walsh C. J., Ester M., Brinkman F. S. 2005; PSORTb v.2.0: expanded prediction of bacterial protein subcellular localization and insights gained from comparative proteome analysis. Bioinformatics 21:617–623
    [Google Scholar]
  11. Gohar M., Okstad O. A., Gilois N., Sanchis V., Kolstø A. B., Lereclus D. 2002; Two-dimensional electrophoresis analysis of the extracellular proteome of Bacillus cereus reveals the importance of the PlcR regulon. Proteomics 2:784–791
    [Google Scholar]
  12. Gohar M., Gilois N., Graveline R., Garreau C., Sanchis V., Lereclus D. 2005; A comparative study of Bacillus cereus, Bacillus thuringiensis and Bacillus anthracis extracellular proteomes. Proteomics 5:3696–3711
    [Google Scholar]
  13. Gohar M., Faegri K., Perchat S., Ravnum S., Okstad O. A., Gominet M., Kolstø A. B., Lereclus D. 2008; The PlcR virulence regulon of Bacillus cereus. PLoS ONE 3:e2793
    [Google Scholar]
  14. Helgason E., Okstad O. A., Caugant D. A., Johansen H. A., Fouet A., Mock M., Hegna I., Kolstø A. B. 2000; Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis – one species on the basis of genetic evidence. Appl Environ Microbiol 66:2627–2630
    [Google Scholar]
  15. Hoffmaster A. R., Ravel J., Rasko D. A., Chapman G. D., Chute M. D., Marston C. K., De B. K., Sacchi C. T., Fitzgerald C. other authors 2004; Identification of anthrax toxin genes in a Bacillus cereus associated with an illness resembling inhalation anthrax. Proc Natl Acad Sci U S A 101:8449–8454
    [Google Scholar]
  16. Hoffmaster A. R., Hill K. K., Gee J. E., Marston C. K., De B. K., Popovic T., Sue D., Wilkins P. P., Avashia S. B. other authors 2006; Characterization of Bacillus cereus isolates associated with fatal pneumonias: strains are closely related to Bacillus anthracis and harbor B. anthracis virulence genes. J Clin Microbiol 44:3352–3360
    [Google Scholar]
  17. Ikezawa H., Mori M., Taguchi R. 1980; Studies on sphingomyelinase of Bacillus cereus: hydrolytic and hemolytic actions on erythrocyte membranes. Arch Biochem Biophys 199:572–578
    [Google Scholar]
  18. Ivanova N., Sorokin A., Anderson I., Galleron N., Candelon B., Kapatral V., Bhattacharyya A., Reznik G., Mikhailova N. other authors 2003; Genome sequence of Bacillus cereus and comparative analysis with Bacillus anthracis. Nature 423:87–91
    [Google Scholar]
  19. Ivins B. E., Ezzell J. W., Jemski J., Hedlund K. W., Ristroph J. D., Leppla S. H. 1986; Immunization studies with attenuated strains of Bacillus anthracis. Infect Immun 52:454–458
    [Google Scholar]
  20. Klee S. R., Ozel M., Appel B., Boesch C., Ellerbrok H., Jacob D., Holland G., Leendertz F. H., Pauli G. other authors 2006; Characterization of Bacillus anthracis-like bacteria isolated from wild great apes from Côte d'Ivoire and Cameroon. J Bacteriol 188:5333–5344
    [Google Scholar]
  21. Klichko V. I., Miller J., Wu A., Popov S. G., Alibek K. 2003; Anaerobic induction of Bacillus anthracis hemolytic activity. Biochem Biophys Res Commun 303:855–862
    [Google Scholar]
  22. Kolstø A. B., Tourasse N. J., Okstad O. A. 2009; What sets Bacillus anthracis apart from other Bacillus species?. Annu Rev Microbiol 63:451–476
    [Google Scholar]
  23. Leppla S. H. 1988; Production and purification of anthrax toxin. Methods Enzymol 165:103–116
    [Google Scholar]
  24. Lereclus D., Agaisse H., Gominet M., Salamitou S., Sanchis V. 1996; Identification of a Bacillus thuringiensis gene that positively regulates transcription of the phosphatidylinositol-specific phospholipase C gene at the onset of the stationary phase. J Bacteriol 178:2749–2756
    [Google Scholar]
  25. Lund T., Granum P. E. 1996; Characterisation of a non-haemolytic enterotoxin complex from Bacillus cereus isolated after a foodborne outbreak. FEMS Microbiol Lett 141:151–156
    [Google Scholar]
  26. Makarova K. S., Aravind L., Koonin E. V. 1999; A superfamily of archaeal, bacterial, and eukaryotic proteins homologous to animal transglutaminases. Protein Sci 8:1714–1719
    [Google Scholar]
  27. McAllister R. D., Singh Y., Du Bois W. D., Potter M., Boehm T., Meeker N. D., Fillmore P. D., Anderson L. M., Poynter M. E. other authors 2003; Susceptibility to anthrax lethal toxin is controlled by three linked quantitative trait loci. Am J Pathol 163:1735–1741
    [Google Scholar]
  28. Mendelson I., Tobery S., Scorpio A., Bozue J., Shafferman A., Friedlander A. M. 2004; The NheA component of the non-hemolytic enterotoxin of Bacillus cereus is produced by Bacillus anthracis but is not required for virulence. Microb Pathog 37:149–154
    [Google Scholar]
  29. Mignot T., Mock M., Robichon D., Landier A., Lereclus D., Fouet A. 2001; The incompatibility between the PlcR- and AtxA-controlled regulons may have selected a nonsense mutation in Bacillus anthracis. Mol Microbiol 42:1189–1198
    [Google Scholar]
  30. Mikesell P., Ivins B. E., Ristroph J. D., Dreier T. M. 1983; Evidence for plasmid-mediated toxin production in Bacillus anthracis. Infect Immun 39:371–376
    [Google Scholar]
  31. Mock M., Fouet A. 2001; Anthrax. Annu Rev Microbiol 55:647–671
    [Google Scholar]
  32. Mosser E. M., Rest R. F. 2006; The Bacillus anthracis cholesterol-dependent cytolysin, anthrolysin O, kills human neutrophils, monocytes and macrophages. BMC Microbiol 6:56
    [Google Scholar]
  33. Okstad O. A., Gominet M., Purnelle B., Rose M., Lereclus D., Kolstø A. B. 1999; Sequence analysis of three Bacillus cereus loci carrying PlcR-regulated genes encoding degradative enzymes and enterotoxin. Microbiology 145:3129–3138
    [Google Scholar]
  34. Park S., Leppla S. H. 2000; Optimized production and purification of Bacillus anthracis lethal factor. Protein Expr Purif 18:293–302
    [Google Scholar]
  35. Passalacqua K. D., Varadarajan A., Byrd B., Bergman N. H. 2009; Comparative transcriptional profiling of Bacillus cereus sensu lato strains during growth in CO2–bicarbonate and aerobic atmospheres. PLoS ONE 4:e4904
    [Google Scholar]
  36. Pomerantsev A. P., Kalnin K. V., Osorio M., Leppla S. H. 2003; Phosphatidylcholine-specific phospholipase C and sphingomyelinase activities in bacteria of the Bacillus cereus group. Infect Immun 71:6591–6606
    [Google Scholar]
  37. Pomerantsev A. P., Pomerantseva O. M., Leppla S. H. 2004; A spontaneous translational fusion of Bacillus cereus PlcR and PapR activates transcription of PlcR-dependent genes in Bacillus anthracis via binding with a specific palindromic sequence. Infect Immun 72:5814–5823
    [Google Scholar]
  38. Pomerantsev A. P., Camp A., Leppla S. H. 2009; A new minimal replicon of Bacillus anthracis plasmid pXO1. J Bacteriol 191:5134–5146
    [Google Scholar]
  39. Rasko D. A., Altherr M. R., Han C. S., Ravel J. 2005; Genomics of the Bacillus cereus group of organisms. FEMS Microbiol Rev 29:303–329
    [Google Scholar]
  40. Read T. D., Peterson S. N., Tourasse N., Baillie L. W., Paulsen I. T., Nelson K. E., Tettelin H., Fouts D. E., Eisen J. A. other authors 2003; The genome sequence of Bacillus anthracis Ames and comparison to closely related bacteria. Nature 423:81–86
    [Google Scholar]
  41. Reddy A., Battisti L., Thorne C. B. 1987; Identification of self-transmissible plasmids in four Bacillus thuringiensis subspecies. J Bacteriol 169:5263–5270
    [Google Scholar]
  42. Ross C. L., Koehler T. M. 2006; plcR papR-independent expression of anthrolysin O by Bacillus anthracis. J Bacteriol 188:7823–7829
    [Google Scholar]
  43. Sastalla I., Chim K., Cheung G. Y., Pomerantsev A. P., Leppla S. H. 2009; Codon-optimized fluorescent proteins designed for expression in low-GC Gram-positive bacteria. Appl Environ Microbiol 75:2099–2110
    [Google Scholar]
  44. Shannon J. G., Ross C. L., Koehler T. M., Rest R. F. 2003; Characterization of anthrolysin O, the Bacillus anthracis cholesterol-dependent cytolysin. Infect Immun 71:3183–3189
    [Google Scholar]
  45. Slamti L., Perchat S., Gominet M., Vilas-Boas G., Fouet A., Mock M., Sanchis V., Chaufaux J., Gohar M. other authors 2004; Distinct mutations in PlcR explain why some strains of the Bacillus cereus group are nonhemolytic. J Bacteriol 186:3531–3538
    [Google Scholar]
  46. Tweten R. K. 2005; Cholesterol-dependent cytolysins, a family of versatile pore-forming toxins. Infect Immun 73:6199–6209
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.041418-0
Loading
/content/journal/micro/10.1099/mic.0.041418-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error