1887

Abstract

, a Gram-positive soil bacterium employed in the industrial production of various amino acids, is able to use a number of different nitrogen sources, such as ammonium, urea or creatinine. This study shows that -glutamine serves as an excellent nitrogen source for and allows similar growth rates in glucose minimal medium to those in ammonium. A transcriptome comparison revealed that the nitrogen starvation response was elicited when glutamine served as the sole nitrogen source, meaning that the target genes of the global nitrogen regulator AmtR were derepressed. Subsequent growth experiments with a variety of mutants defective in nitrogen metabolism showed that glutamate synthase is crucial for glutamine utilization, while a putative glutaminase is dispensable under the experimental conditions used. The operon encoding the glutamate synthase is a member of the AmtR regulon. The observation that the nitrogen starvation response was elicited at high intracellular -glutamine levels has implications for nitrogen sensing. In contrast with other Gram-positive and Gram-negative bacteria such as , serovar Typhimurium and , a drop in glutamine concentration obviously does not serve as a nitrogen starvation signal in

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.040667-0
2010-10-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/10/3180.html?itemId=/content/journal/micro/10.1099/mic.0.040667-0&mimeType=html&fmt=ahah

References

  1. Abe, S., Takayama, K. & Kinoshita, S. ( 1967; ). Taxonomical studies on glutamic acid producing bacteria. J Gen Appl Microbiol 13, 279–301.[CrossRef]
    [Google Scholar]
  2. Amon, J., Titgemeyer, F. & Burkovski, A. ( 2010; ). Common patterns – unique features: nitrogen metabolism and regulation in Gram-positive bacteria. FEMS Microbiol Rev 34, 588–605.
    [Google Scholar]
  3. Arndt, A. & Eikmanns, B. J. ( 2007; ). The alcohol dehydrogenase gene adhA in Corynebacterium glutamicum is subject to carbon catabolite repression. J Bacteriol 189, 7408–7416.[CrossRef]
    [Google Scholar]
  4. Auchter, M., Arndt, A. & Eikmanns, B. J. ( 2009; ). Dual transcriptional control of the acetaldehyde dehydrogenase gene ald of Corynebacterium glutamicum by RamA and RamB. J Biotechnol 140, 84–91.[CrossRef]
    [Google Scholar]
  5. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A. & Struhl, K. (editors) ( 1987; ). Current Protocols in Molecular Biology. New York: Wiley.
    [Google Scholar]
  6. Beckers, G., Nolden, L. & Burkovski, A. ( 2001; ). Glutamate synthase of Corynebacterium glutamicum is not essential for glutamate synthesis and is regulated by the nitrogen status. Microbiology 147, 2961–2970.
    [Google Scholar]
  7. Beckers, G., Bendt, A. K., Krämer, R. & Burkovski, A. ( 2004; ). Molecular identification of the urea uptake system and transcriptional analysis of urea transporter- and urease-encoding genes in Corynebacterium glutamicum. J Bacteriol 186, 7645–7652.[CrossRef]
    [Google Scholar]
  8. Beckers, G., Strösser, J., Hildebrandt, U., Kalinowski, J., Farwick, M., Krämer, R. & Burkovski, A. ( 2005; ). Regulation of AmtR-controlled gene expression in Corynebacterium glutamicum: mechanism and characterization of the AmtR regulon. Mol Microbiol 58, 580–595.[CrossRef]
    [Google Scholar]
  9. Bendt, A. K., Burkovski, A., Schaffer, S., Bott, M., Farwick, M. & Hermann, T. ( 2003; ). Towards a phosphoproteome map of Corynebacterium glutamicum. Proteomics 3, 1637–1646.[CrossRef]
    [Google Scholar]
  10. Bendt, A. K., Beckers, G., Silberbach, M., Wittmann, A. & Burkovski, A. ( 2004; ). Utilization of creatinine as an alternative nitrogen source in Corynebacterium glutamicum. Arch Microbiol 181, 443–450.[CrossRef]
    [Google Scholar]
  11. Bott, M. ( 2007; ). Offering surprises: TCA cycle regulation in Corynebacterium glutamicum. Trends Microbiol 15, 417–425.[CrossRef]
    [Google Scholar]
  12. Botzenhardt, J., Morbach, S. & Krämer, R. ( 2004; ). Activity regulation of the betaine transporter BetP of Corynebacterium glutamicum in response to osmotic compensation. Biochim Biophys Acta 1667, 229–240.[CrossRef]
    [Google Scholar]
  13. Brazma, A., Hingamp, P., Quackenbush, J., Sherlock, G., Spellman, P., Stoeckert, C., Aach, J., Ansorge, W., Ball, C. A. & other authors ( 2001; ). Minimum information about a microarray experiment (MIAME) –toward standards for microarray data. Nat Genet 29, 365–371.[CrossRef]
    [Google Scholar]
  14. Brune, I., Werner, H., Hüser, A. T., Kalinowski, J., Pühler, A. & Tauch, A. ( 2006; ). The DtxR protein acting as dual transcriptional regulator directs a global regulatory network involved in iron metabolism of Corynebacterium glutamicum. BMC Genomics 7, 21.[CrossRef]
    [Google Scholar]
  15. Buchinger, S., Strösser, J., Rehm, N., Hänßler, E., Hans, S., Bathe, B., Schomburg, D., Krämer, R. & Burkovski, A. ( 2009; ). A combination of metabolome and transcriptome analyses reveals new targets of the Corynebacterium glutamicum nitrogen regulator AmtR. J Biotechnol 140, 68–74.[CrossRef]
    [Google Scholar]
  16. Cramer, A., Gerstmeir, R., Schaffer, S., Bott, M. & Eikmanns, B. J. ( 2006; ). Identification of RamA, a novel LuxR-type transcriptional regulator of genes involved in acetate metabolism of Corynebacterium glutamicum. J Bacteriol 188, 2554–2567.[CrossRef]
    [Google Scholar]
  17. Durán, S., Pont, G. D., Huertazepeda, A. & Calderón, J. ( 1995; ). The role of glutaminase in Rhizobium etli – studies with a new mutant. Microbiology 141, 2883–2889.[CrossRef]
    [Google Scholar]
  18. Durán, S., Sanchez Linares, L., Huerta Saquero, A., DuPont, G., Huerta Zepeda, A. & Calderón, J. ( 1996; ). Identification of two glutaminases in Rhizobium etli. Biochem Genet 34, 453–465.[CrossRef]
    [Google Scholar]
  19. Eikmanns, B. J., Kleinertz, E., Liebl, W. & Sahm, H. ( 1991; ). A family of Corynebacterium glutamicum/Escherichia coli shuttle vectors for cloning, controlled gene expression, and promoter probing. Gene 102, 93–98.[CrossRef]
    [Google Scholar]
  20. Eikmanns, B. J., Thum-Schmitz, N., Eggeling, L., Lüdtke, K. U. & Sahm, H. ( 1994; ). Nucleotide sequence, expression and transcriptional analysis of the Corynebacterium glutamicum gltA gene encoding citrate synthase. Microbiology 140, 1817–1828.[CrossRef]
    [Google Scholar]
  21. Fisher, S. H. ( 1999; ). Regulation of nitrogen metabolism in Bacillus subtilis: vive la difference! Mol Microbiol 32, 223–232.[CrossRef]
    [Google Scholar]
  22. Fisher, S. H. & Wray, L. V. ( 2008; ). Bacillus subtilis glutamine synthetase regulates its own synthesis by acting as a chaperone to stabilize GlnR–DNA complexes. Proc Natl Acad Sci U S A 105, 1014–1019.[CrossRef]
    [Google Scholar]
  23. Fisher, S. H. & Wray, L. V. ( 2009; ). Novel trans-acting Bacillus subtilis glnA mutations that derepress glnRA expression. J Bacteriol 191, 2485–2492.[CrossRef]
    [Google Scholar]
  24. Follmann, M., Ochrombel, I., Krämer, R., Trötschel, C., Poetsch, A., Rückert, C., Hüser, A., Persicke, M., Seiferling, D. & other authors ( 2009; ). Functional genomics of pH homeostasis in Corynebacterium glutamicum revealed novel links between pH response, oxidative stress, iron homeostasis and methionine synthesis. BMC Genomics 10, 621.[CrossRef]
    [Google Scholar]
  25. Frunzke, J. & Bott, M. ( 2008; ). Regulation of iron homeostasis in Corynebacterium glutamicum. In Corynebacteria: Genomics and Molecular Biology, pp. 241–266. Edited by Burkovski, A.. Norfolk, UK: Caister Academic Press.
    [Google Scholar]
  26. Grant, S. G. N., Jessee, J., Bloom, F. R. & Hanahan, D. ( 1990; ). Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants. Proc Natl Acad Sci U S A 87, 4645–4649.[CrossRef]
    [Google Scholar]
  27. Hermann, T. ( 2003; ). Industrial production of amino acids by coryneform bacteria. J Biotechnol 104, 155–172.[CrossRef]
    [Google Scholar]
  28. Hu, P., Leighton, T., Ishkhanova, G. & Kustu, S. ( 1999; ). Sensing of nitrogen limitation by Bacillus subtilis: comparison to enteric bacteria. J Bacteriol 181, 5042–5050.
    [Google Scholar]
  29. Hüser, A. T., Becker, A., Brune, I., Dondrup, M., Kalinowski, J., Plassmeier, J., Pühler, A., Wiegrabe, I. & Tauch, A. ( 2003; ). Development of a Corynebacterium glutamicum DNA microarray and validation by genome-wide expression profiling during growth with propionate as carbon source. J Biotechnol 106, 269–286.[CrossRef]
    [Google Scholar]
  30. Ikeda, M. & Nakagawa, S. ( 2003; ). The Corynebacterium glutamicum genome: features and impacts on biotechnological processes. Appl Microbiol Biotechnol 62, 99–109.[CrossRef]
    [Google Scholar]
  31. Ikeda, T. P., Shauger, A. E. & Kustu, S. ( 1996; ). Salmonella typhimurium apparently perceives external nitrogen limitation as internal glutamine limitation. J Mol Biol 259, 589–607.[CrossRef]
    [Google Scholar]
  32. Jakoby, M., Tesch, M., Sahm, H., Krämer, R. & Burkovski, A. ( 1997; ). Isolation of the Corynebacterium glutamicum glnA gene encoding glutamine synthetase I. FEMS Microbiol Lett 154, 81–88.[CrossRef]
    [Google Scholar]
  33. Jakoby, M., Krämer, R. & Burkovski, A. ( 1999; ). Nitrogen regulation in Corynebacterium glutamicum: isolation of genes involved and biochemical characterization of corresponding proteins. FEMS Microbiol Lett 173, 303–310.[CrossRef]
    [Google Scholar]
  34. Jakoby, M., Nolden, L., Meier-Wagner, J., Krämer, R. & Burkovski, A. ( 2000; ). AmtR, a global repressor in the nitrogen regulation system of Corynebacterium glutamicum. Mol Microbiol 37, 964–977.[CrossRef]
    [Google Scholar]
  35. Jiang, P. & Ninfa, A. J. ( 2009a; ). α-Ketoglutarate controls the ability of the Escherichia coli PII signal transduction protein to regulate the activities of NRII (NtrB) but does not control the binding of PII to NRII. Biochemistry 48, 11514–11521.[CrossRef]
    [Google Scholar]
  36. Jiang, P. & Ninfa, A. J. ( 2009b; ). Sensation and signaling of α-ketoglutarate and adenylylate energy charge by the Escherichia coli PII signal transduction protein require cooperation of the three ligand-binding sites within the PII trimer. Biochemistry 48, 11522–11531.[CrossRef]
    [Google Scholar]
  37. Kalinowski, J., Bathe, B., Bartels, D., Bischoff, N., Bott, M., Burkovski, A., Dusch, N., Eggeling, L., Eikmanns, B. J. & other authors ( 2003; ). The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins. J Biotechnol 104, 5–25.[CrossRef]
    [Google Scholar]
  38. Keilhauer, C., Eggeling, L. & Sahm, H. ( 1993; ). Isoleucine synthesis in Corynebacterium glutamicum: molecular analysis of the ilvB-ilvN-ilvC operon. J Bacteriol 175, 5595–5603.
    [Google Scholar]
  39. Kinoshita, S., Udaka, S. & Shimono, M. ( 2004; ). Studies on amino acid fermentation. Part I. Production of L-glutamic acid by various microorganisms. J Gen Appl Microbiol 50, 331–343.
    [Google Scholar]
  40. Lange, C., Rittmann, D., Wendisch, V. F., Bott, M. & Sahm, H. ( 2003; ). Global expression profiling and physiological characterization of Corynebacterium glutamicum grown in the presence of l-valine. Appl Environ Microbiol 69, 2521–2532.[CrossRef]
    [Google Scholar]
  41. Leuchtenberger, W., Huthmacher, K. & Drauz, K. ( 2005; ). Biotechnological production of amino acids and derivatives: current status and prospects. Appl Microbiol Biotechnol 69, 1–8.[CrossRef]
    [Google Scholar]
  42. Marienhagen, J. & Eggeling, L. ( 2008; ). Metabolic function of Corynebacterium glutamicum aminotransferases AlaT and AvtA and impact on l-valine production. Appl Environ Microbiol 74, 7457–7462.[CrossRef]
    [Google Scholar]
  43. Marienhagen, J., Kennerknecht, N., Sahm, H. & Eggeling, L. ( 2005; ). Functional analysis of all aminotransferase proteins inferred from the genome sequence of Corynebacterium glutamicum. J Bacteriol 187, 7639–7646.[CrossRef]
    [Google Scholar]
  44. Meier-Wagner, J., Nolden, L., Jakoby, M., Siewe, R., Krämer, R. & Burkovski, A. ( 2001; ). Multiplicity of ammonium uptake systems in Corynebacterium glutamicum: role of Amt and AmtB. Microbiology 147, 135–143.
    [Google Scholar]
  45. Möker, N., Brocker, M., Schaffer, S., Krämer, R., Morbach, S. & Bott, M. ( 2004; ). Deletion of the genes encoding the MtrA–MtrB two-component system of Corynebacterium glutamicum has a strong influence on cell morphology, antibiotics susceptibility and expression of genes involved in osmoprotection. Mol Microbiol 54, 420–438.[CrossRef]
    [Google Scholar]
  46. Müller, T., Strösser, J., Buchinger, S., Nolden, L., Wirtz, A., Krämer, R. & Burkovski, A. ( 2006; ). Mutation-induced metabolite pool alterations in Corynebacterium glutamicum: towards the identification of nitrogen control signals. J Biotechnol 126, 440–453.[CrossRef]
    [Google Scholar]
  47. Niebisch, A. & Bott, M. ( 2001; ). Molecular analysis of the cytochrome bc 1 –aa 3 branch of the Corynebacterium glutamicum respiratory chain containing an unusual diheme cytochrome c 1. Arch Microbiol 175, 282–294.[CrossRef]
    [Google Scholar]
  48. Niebisch, A., Kabus, A., Schultz, C., Weil, B. & Bott, M. ( 2006; ). Corynebacterial protein kinase G controls 2-oxoglutarate dehydrogenase activity via the phosphorylation status of the OdhI protein. J Biol Chem 281, 12300–12307.[CrossRef]
    [Google Scholar]
  49. Nohno, T., Saito, T. & Hong, J. ( 1986; ). Cloning and complete nucleotide sequence of the Escherichia coli glutamine permease operon (glnHPQ). Mol Gen Genet 205, 260–269.[CrossRef]
    [Google Scholar]
  50. Nolden, L., Beckers, G., Möckel, B., Pfefferle, W., Nampoothiri, K. M., Krämer, R. & Burkovski, A. ( 2000; ). Urease of Corynebacterium glutamicum: organization of corresponding genes and investigation of activity. FEMS Microbiol Lett 189, 305–310.[CrossRef]
    [Google Scholar]
  51. Nolden, L., Farwick, M., Krämer, R. & Burkovski, A. ( 2001a; ). Glutamine synthetases of Corynebacterium glutamicum: transcriptional control and regulation of activity. FEMS Microbiol Lett 201, 91–98.[CrossRef]
    [Google Scholar]
  52. Nolden, L., Ngouoto-Nkili, C. E., Bendt, A. K., Krämer, R. & Burkovski, A. ( 2001b; ). Sensing nitrogen limitation in Corynebacterium glutamicum: the role of glnK and glnD. Mol Microbiol 42, 1281–1295.
    [Google Scholar]
  53. Picossi, S., Belitsky, B. R. & Sonenshein, A. L. ( 2007; ). Molecular mechanism of the regulation of Bacillus subtilis gltAB expression by GltC. J Mol Biol 365, 1298–1313.[CrossRef]
    [Google Scholar]
  54. Polen, T. & Wendisch, V. F. ( 2004; ). Genomewide expression analysis in amino acid-producing bacteria using DNA microarrays. Appl Biochem Biotechnol 118, 215–232.[CrossRef]
    [Google Scholar]
  55. Sambrook, J., MacCallum, P. & Russell, D. ( 2001; ). Molecular Cloning. A Laboratory Manual, 3rd edn. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press.
    [Google Scholar]
  56. Schäfer, A., Tauch, A., Jäger, W., Kalinowski, J., Thierbach, G. & Pühler, A. ( 1994; ). Small mobilizable multipurpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19 – selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145, 69–73.[CrossRef]
    [Google Scholar]
  57. Schaffer, S., Weil, B., Nguyen, V. D., Dongmann, G., Günther, K., Nickolaus, M., Hermann, T. & Bott, M. ( 2001; ). A high-resolution reference map for cytoplasmic and membrane-associated proteins of Corynebacterium glutamicum. Electrophoresis 22, 4404–4422.[CrossRef]
    [Google Scholar]
  58. Schägger, H. & von Jagow, G. ( 1987; ). Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166, 368–379.[CrossRef]
    [Google Scholar]
  59. Schmitz, R. A. ( 2000; ). Internal glutamine and glutamate pools in Klebsiella pneumoniae grown under different conditions of nitrogen availability. Curr Microbiol 41, 357–362.[CrossRef]
    [Google Scholar]
  60. Schreier, H. J., Brown, S. W., Hirschi, K. D., Nomellini, J. F. & Sonenshein, A. L. ( 1989; ). Regulation of Bacillus subtilis glutamine synthetase gene expression by the product of the glnR Gene. J Mol Biol 210, 51–63.[CrossRef]
    [Google Scholar]
  61. Schulz, A. A., Collett, H. J. & Reid, S. J. ( 2001; ). Nitrogen and carbon regulation of glutamine synthetase and glutamate synthase in Corynebacterium glutamicum ATCC 13032. FEMS Microbiol Lett 205, 361–367.[CrossRef]
    [Google Scholar]
  62. Shapiro, B. M. & Stadtman, E. R. ( 1970; ). Glutamine synthetase (Escherichia coli). Methods Enzymol 17A, 910–922.
    [Google Scholar]
  63. Shiio, I. & Ozaki, H. ( 1970; ). Regulation of nicotinamide adenine dinucleotide phosphate-specific glutamate dehydrogenase from Brevibacterium flavum, a glutamate-producing bacterium. J Biochem 68, 633–647.
    [Google Scholar]
  64. Siewe, R. M., Weil, B. & Krämer, R. ( 1995; ). Glutamine uptake by a sodium-dependent secondary transport system in Corynebacterium glutamicum. Arch Microbiol 164, 98–103.[CrossRef]
    [Google Scholar]
  65. Silberbach, M., Hüser, A., Kalinowski, J., Pühler, A., Walter, B., Krämer, R. & Burkovski, A. ( 2005a; ). DNA microarray analysis of the nitrogen starvation response of Corynebacterium glutamicum. J Biotechnol 119, 357–367.[CrossRef]
    [Google Scholar]
  66. Silberbach, M., Schäfer, M., Hüser, A. T., Kalinowski, J., Pühler, A., Krämer, R. & Burkovski, A. ( 2005b; ). Adaptation of Corynebacterium glutamicum to ammonium limitation: a global analysis using transcriptome and proteome techniques. Appl Environ Microbiol 71, 2391–2402.[CrossRef]
    [Google Scholar]
  67. Sonenshein, A. L. ( 2007; ). Control of key metabolic intersections in Bacillus subtilis. Nat Rev Microbiol 5, 917–927.[CrossRef]
    [Google Scholar]
  68. Tesch, M., Eikmanns, B. J., de Graaf, A. A. & Sahm, H. ( 1998; ). Ammonia assimilation in Corynebacterium glutamicum and a glutamate dehydrogenase-deficient mutant. Biotechnol Lett 20, 953–957.[CrossRef]
    [Google Scholar]
  69. Udaka, S. ( 1960; ). Screening method for microorganisms accumulating metabolites and its use in the isolation of Micrococcus glutamicus. J Bacteriol 79, 754–755.
    [Google Scholar]
  70. van der Rest, M. E., Lange, C. & Molenaar, D. ( 1999; ). A heat shock following electroporation induces highly efficient transformation of Corynebacterium glutamicum with xenogeneic plasmid DNA. Appl Microbiol Biotechnol 52, 541–545.[CrossRef]
    [Google Scholar]
  71. Weiss, V., Kramer, G., Dunnebier, T. & Flotho, A. ( 2002; ). Mechanism of regulation of the bifunctional histidine kinase NtrB in Escherichia coli. J Mol Microbiol Biotechnol 4, 229–233.
    [Google Scholar]
  72. Wendisch, V. F. ( 2003; ). Genome-wide expression analysis in Corynebacterium glutamicum using DNA microarrays. J Biotechnol 104, 273–285.[CrossRef]
    [Google Scholar]
  73. Wennerhold, J. & Bott, M. ( 2006; ). The DtxR regulon of Corynebacterium glutamicum. J Bacteriol 188, 2907–2918.[CrossRef]
    [Google Scholar]
  74. Wennerhold, J., Krug, A. & Bott, M. ( 2005; ). The AraC-type regulator RipA represses aconitase and other iron proteins from Corynebacterium under iron limitation and is itself repressed by DtxR. J Biol Chem 280, 40500–40508.[CrossRef]
    [Google Scholar]
  75. Wray, L. V. & Fisher, S. H. ( 2008; ). Bacillus subtilis GlnR contains an autoinhibitory C-terminal domain required for the interaction with glutamine synthetase. Mol Microbiol 68, 277–285.[CrossRef]
    [Google Scholar]
  76. Wray, L. V., Ferson, A. E., Rohrer, K. & Fisher, S. H. ( 1996; ). TnrA, a transcription factor required for global nitrogen regulation in Bacillus subtilis. Proc Natl Acad Sci U S A 93, 8841–8845.[CrossRef]
    [Google Scholar]
  77. Wray, L. V., Zalieckas, J. M., Ferson, A. E. & Fisher, S. H. ( 1998; ). Mutational analysis of the TnrA-binding sites in the Bacillus subtilis nrgAB and gabP promoter regions. J Bacteriol 180, 2943–2949.
    [Google Scholar]
  78. Zhang, Y., Pohlmann, E. L., Serate, J., Conrad, M. C. & Roberts, G. P. ( 2010; ). Mutagenesis and functional characterization of the four domains of GlnD, a bifunctional nitrogen sensor protein. J Bacteriol 192, 2711–2721.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.040667-0
Loading
/content/journal/micro/10.1099/mic.0.040667-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error