1887

Abstract

Although it is known that antibiotics have short-term impacts on the human microbiome, recent evidence demonstrates that the impacts of some antibiotics remain for extended periods of time. In addition, antibiotic-resistant strains can persist in the human host environment in the absence of selective pressure. Both molecular- and cultivation-based approaches have revealed ecological disturbances in the microbiota after antibiotic administration, in particular for specific members of the bacterial community that are susceptible or alternatively resistant to the antibiotic in question. A disturbing consequence of antibiotic treatment has been the long-term persistence of antibiotic resistance genes, for example in the human gut. These data warrant use of prudence in the administration of antibiotics that could aggravate the growing battle with emerging antibiotic-resistant pathogenic strains.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.040618-0
2010-11-01
2019-11-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/11/3216.html?itemId=/content/journal/micro/10.1099/mic.0.040618-0&mimeType=html&fmt=ahah

References

  1. Adamsson, I., Nord, C. E., Lundquist, P., Sjöstedt, S. & Edlund, C. ( 1999; ). Comparative effects of omeprazole, amoxycillin plus metronidazole versus omeprazole, clarithromycin plus metronidazole on the oral, gastric and intestinal microflora in Helicobacter pylori-infected patients. J Antimicrob Chemother 44, 629–640.[CrossRef]
    [Google Scholar]
  2. Andersson, D. I. & Hughes, D. ( 2010; ). Antibiotic resistance and its cost: is it possible to reverse resistance? Nat Rev Microbiol 8, 260–271.
    [Google Scholar]
  3. Andersson, A. F., Lindberg, M., Jakobsson, H., Backhed, F., Nyren, P. & Engstrand, L. ( 2008; ). Comparative analysis of human gut microbiota by barcoded pyrosequencing. PLoS ONE 3, e2836.[CrossRef]
    [Google Scholar]
  4. Andremont, A. ( 2003; ). Commensal flora may play a key role in spreading antibiotic resistance. ASM News 69, 601–607. http://forms.asm.org/microbe/index.asp?bid=23553
    [Google Scholar]
  5. Aubry-Damon, H., Grenet, K., Sall-Ndiaye, P., Che, D., Cordeiro, E., Bougnoux, M. E., Rigaud, E., Le Strat, Y., Lemanissier, V. & other authors ( 2004; ). Antimicrobial resistance in commensal flora of pig farmers. Emerg Infect Dis 10, 873–879.[CrossRef]
    [Google Scholar]
  6. Bäckhed, F., Ley, R. E., Sonnenburg, J. L., Peterson, D. A. & Gordon, J. I. ( 2005; ). Host–bacterial mutualism in the human intestine. Science 307, 1915–1920.[CrossRef]
    [Google Scholar]
  7. Barc, M. C., Bourlioux, F., Rigottier-Gois, L., Charrin-Sarnel, C., Janoir, C., Boureau, H., Dore, J. & Collignon, A. ( 2004; ). Effect of amoxicillin–clavulanic acid on human fecal flora in a gnotobiotic mouse model assessed with fluorescence hybridization using group-specific 16S rRNA probes in combination with flow cytometry. Antimicrob Agents Chemother 48, 1365–1368.[CrossRef]
    [Google Scholar]
  8. Bartlett, J. G. ( 2002; ). Clinical practice. Antibiotic-associated diarrhea. N Engl J Med 346, 334–339.[CrossRef]
    [Google Scholar]
  9. Brugère, J. F., Mihajlovski, A., Missaoui, M. & Peyret, P. ( 2009; ). Tools for stools: the challenge of assessing human intestinal microbiota using molecular diagnostics. Expert Rev Mol Diagn 9, 353–365.[CrossRef]
    [Google Scholar]
  10. de la Cochetière, M. F., Durand, T., Lepage, P., Bourreille, A., Galmiche, J. P. & Dore, J. ( 2005; ). Resilience of the dominant human fecal microbiota upon short-course antibiotic challenge. J Clin Microbiol 43, 5588–5592.[CrossRef]
    [Google Scholar]
  11. Dethlefsen, L., Huse, S., Sogin, M. L. & Relman, D. A. ( 2008; ). The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol 6, e280.[CrossRef]
    [Google Scholar]
  12. Dicksved, J., Floistrup, H., Bergstrom, A., Rosenquist, M., Pershagen, G., Scheynius, A., Roos, S., Alm, J. S., Engstrand, L. & other authors ( 2007; ). Molecular fingerprinting of the fecal microbiota of children raised according to different lifestyles. Appl Environ Microbiol 73, 2284–2289.[CrossRef]
    [Google Scholar]
  13. Donskey, C. J., Hujer, A. M., Das, S. M., Pultz, N. J., Bonomo, R. A. & Rice, L. B. ( 2003; ). Use of denaturing gradient gel electrophoresis for analysis of the stool microbiota of hospitalized patients. J Microbiol Methods 54, 249–256.[CrossRef]
    [Google Scholar]
  14. Duncan, S. H., Lobley, G. E., Holtrop, G., Ince, J., Johnstone, A. M., Louis, P. & Flint, H. J. ( 2008; ). Human colonic microbiota associated with diet, obesity and weight loss. Int J Obes (Lond) 32, 1720–1724.[CrossRef]
    [Google Scholar]
  15. Eckburg, P. B., Bik, E. M., Bernstein, C. N., Purdom, E., Dethlefsen, L., Sargent, M., Gill, S. R., Nelson, K. E. & Relman, D. A. ( 2005; ). Diversity of the human intestinal microbial flora. Science 308, 1635–1638.[CrossRef]
    [Google Scholar]
  16. Edlund, C. & Nord, C. E. ( 1993; ). Ecological impact of antimicrobial agents on human intestinal microflora. Alpe Adria Microbiol J 2, 137–164.
    [Google Scholar]
  17. Engelbrektson, A. L., Korzenik, J. R., Sanders, M. E., Clement, B. G., Leyer, G., Klaenhammer, T. R. & Kitts, C. L. ( 2006; ). Analysis of treatment effects on the microbial ecology of the human intestine. FEMS Microbiol Ecol 57, 239–250.[CrossRef]
    [Google Scholar]
  18. Fanaro, S., Chierici, R., Guerrini, P. & Vigi, V. ( 2003; ). Intestinal microflora in early infancy: composition and development. Acta Paediatr Suppl 91, 48–55.
    [Google Scholar]
  19. Flint, H. J., Duncan, S. H., Scott, K. P. & Louis, P. ( 2007; ). Interactions and competition within the microbial community of the human colon: links between diet and health. Environ Microbiol 9, 1101–1111.[CrossRef]
    [Google Scholar]
  20. Hamady, M. & Knight, R. ( 2009; ). Microbial community profiling for human microbiome projects: tools, techniques, and challenges. Genome Res 19, 1141–1152.[CrossRef]
    [Google Scholar]
  21. Heuer, H. & Smalla, K. ( 2007; ). Manure and sulfadiazine synergistically increased bacterial antibiotic resistance in soil over at least two months. Environ Microbiol 9, 657–666.[CrossRef]
    [Google Scholar]
  22. Jakobsson, H., Wreiber, K., Fall, K., Fjelstad, B., Nyren, O. & Engstrand, L. ( 2007; ). Macrolide resistance in the normal microbiota after Helicobacter pylori treatment. Scand J Infect Dis 39, 757–763.[CrossRef]
    [Google Scholar]
  23. Jakobsson, H. E., Jernberg, C., Andersson, A. F., Sjölund-Karlsson, M., Jansson, J. K. & Engstrand, L. ( 2010; ). Short-term antibiotic treatment has differing long-term impacts on the human throat and gut microbiome. PLoS ONE 5, e9836.[CrossRef]
    [Google Scholar]
  24. Janczyk, P., Pieper, R., Souffrant, W. B., Bimczok, D., Rothkotter, H. J. & Smidt, H. ( 2007; ). Parenteral long-acting amoxicillin reduces intestinal bacterial community diversity in piglets even 5 weeks after the administration. ISME J 1, 180–183.[CrossRef]
    [Google Scholar]
  25. Jernberg, C., Löfmark, S., Edlund, C. & Jansson, J. K. ( 2007; ). Long-term ecological impacts of antibiotic administration on the human intestinal microbiota. ISME J 1, 56–66.[CrossRef]
    [Google Scholar]
  26. Karami, N., Martner, A., Enne, V. I., Swerkersson, S., Adlerberth, I. & Wold, A. E. ( 2007; ). Transfer of an ampicillin resistance gene between two Escherichia coli strains in the bowel microbiota of an infant treated with antibiotics. J Antimicrob Chemother 60, 1142–1145.[CrossRef]
    [Google Scholar]
  27. Karami, N., Hannoun, C., Adlerberth, I. & Wold, A. E. ( 2008; ). Colonization dynamics of ampicillin-resistant Escherichia coli in the infantile colonic microbiota. J Antimicrob Chemother 62, 703–708.[CrossRef]
    [Google Scholar]
  28. Lester, C. H., Frimodt-Moller, N., Sorensen, T. L., Monnet, D. L. & Hammerum, A. M. ( 2006; ). In vivo transfer of the vanA resistance gene from an Enterococcus faecium isolate of animal origin to an E. faecium isolate of human origin in the intestines of human volunteers. Antimicrob Agents Chemother 50, 596–599.[CrossRef]
    [Google Scholar]
  29. Levy, J. ( 2000; ). The effects of antibiotic use on gastrointestinal function. Am J Gastroenterol 95, S8–S10.[CrossRef]
    [Google Scholar]
  30. Ley, R. E., Backhed, F., Turnbaugh, P., Lozupone, C. A., Knight, R. D. & Gordon, J. I. ( 2005; ). Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A 102, 11070–11075.[CrossRef]
    [Google Scholar]
  31. Ley, R. E., Turnbaugh, P. J., Klein, S. & Gordon, J. I. ( 2006; ). Microbial ecology: human gut microbes associated with obesity. Nature 444, 1022–1023.[CrossRef]
    [Google Scholar]
  32. Lindgren, M., Lofmark, S., Edlund, C., Huovinen, P. & Jalava, J. ( 2009; ). Prolonged impact of a one-week course of clindamycin on Enterococcus spp. in human normal microbiota. Scand J Infect Dis 41, 215–219.[CrossRef]
    [Google Scholar]
  33. Löfmark, S., Jernberg, C., Jansson, J. K. & Edlund, C. ( 2006; ). Clindamycin-induced enrichment and long-term persistence of resistant Bacteroides spp. and resistance genes. J Antimicrob Chemother 58, 1160–1167.[CrossRef]
    [Google Scholar]
  34. Löfmark, S., Jernberg, C., Billstrom, H., Andersson, D. I. & Edlund, C. ( 2008; ). Restored fitness leads to long-term persistence of resistant Bacteroides strains in the human intestine. Anaerobe 14, 157–160.[CrossRef]
    [Google Scholar]
  35. Malhotra-Kumar, S., Lammens, C., Coenen, S., Van Herck, K. & Goossens, H. ( 2007; ). Effect of azithromycin and clarithromycin therapy on pharyngeal carriage of macrolide-resistant streptococci in healthy volunteers: a randomised, double-blind, placebo-controlled study. Lancet 369, 482–490.[CrossRef]
    [Google Scholar]
  36. McFarland, L. V. ( 1998; ). Epidemiology, risk factors and treatments for antibiotic-associated diarrhea. Dig Dis 16, 292–307.[CrossRef]
    [Google Scholar]
  37. Nyberg, S. D., Osterblad, M., Hakanen, A. J., Lofmark, S., Edlund, C., Huovinen, P. & Jalava, J. ( 2007; ). Long-term antimicrobial resistance in Escherichia coli from human intestinal microbiota after administration of clindamycin. Scand J Infect Dis 39, 514–520.[CrossRef]
    [Google Scholar]
  38. Qin, J., Li, R., Raes, J., Arumugam, M., Burgdorf, K. S., Manichanh, C., Nielsen, T., Pons, N., Levenez, F. & other authors ( 2010; ). A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65.[CrossRef]
    [Google Scholar]
  39. Salyers, A. A., Gupta, A. & Wang, Y. ( 2004; ). Human intestinal bacteria as reservoirs for antibiotic resistance genes. Trends Microbiol 12, 412–416.[CrossRef]
    [Google Scholar]
  40. Scott, K. P. ( 2002; ). The role of conjugative transposons in spreading antibiotic resistance between bacteria that inhabit the gastrointestinal tract. Cell Mol Life Sci 59, 2071–2082.[CrossRef]
    [Google Scholar]
  41. Shoemaker, N. B., Vlamakis, H., Hayes, K. & Salyers, A. A. ( 2001; ). Evidence for extensive resistance gene transfer among Bacteroides spp. and among Bacteroides and other genera in the human colon. Appl Environ Microbiol 67, 561–568.[CrossRef]
    [Google Scholar]
  42. Sjölund, M., Wreiber, K., Andersson, D. I., Blaser, M. J. & Engstrand, L. ( 2003; ). Long-term persistence of resistant Enterococcus species after antibiotics to eradicate Helicobacter pylori. Ann Intern Med 139, 483–487.[CrossRef]
    [Google Scholar]
  43. Sjölund, M., Tano, E., Blaser, M. J., Andersson, D. I. & Engstrand, L. ( 2005; ). Persistence of resistant Staphylococcus epidermidis after single course of clarithromycin. Emerg Infect Dis 11, 1389–1393.[CrossRef]
    [Google Scholar]
  44. Sommer, M. O., Dantas, G. & Church, G. M. ( 2009; ). Functional characterization of the antibiotic resistance reservoir in the human microflora. Science 325, 1128–1131.[CrossRef]
    [Google Scholar]
  45. Sullivan, A., Edlund, C. & Nord, C. E. ( 2001; ). Effect of antimicrobial agents on the ecological balance of human microflora. Lancet Infect Dis 1, 101–114.[CrossRef]
    [Google Scholar]
  46. Turnbaugh, P. J., Ley, R. E., Hamady, M., Fraser-Liggett, C. M., Knight, R. & Gordon, J. I. ( 2007; ). The human microbiome project. Nature 449, 804–810.[CrossRef]
    [Google Scholar]
  47. Turnbaugh, P. J., Hamady, M., Yatsunenko, T., Cantarel, B. L., Duncan, A., Ley, R. E., Sogin, M. L., Jones, W. J., Roe, B. A. & other authors ( 2009; ). A core gut microbiome in obese and lean twins. Nature 457, 480–484.[CrossRef]
    [Google Scholar]
  48. Young, V. B. & Schmidt, T. M. ( 2004; ). Antibiotic-associated diarrhea accompanied by large-scale alterations in the composition of the fecal microbiota. J Clin Microbiol 42, 1203–1206.[CrossRef]
    [Google Scholar]
  49. Zoetendal, E. G., Akkermans, A. D. & De Vos, W. M. ( 1998; ). Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria. Appl Environ Microbiol 64, 3854–3859.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.040618-0
Loading
/content/journal/micro/10.1099/mic.0.040618-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error