1887

Abstract

, an important food-borne bacterial pathogen in industrialized countries and in the developing world, is one of the major causes of bacterial diarrhoea. To identify genes which are important for the invasion of host cells by the pathogen, we screened altogether 660 clones of a transposon-generated mutant library based on the clinical isolate B2. Thereby, we identified a clone with a transposon insertion in gene . As in the well-characterized strain NCTC 11168, the corresponding protein together with the gene product of the adjacent gene consists of two transmembrane domains, a HAMP domain and a putative MCP domain, which together are thought to act as a chemoreceptor, designated Tlp7. In this report we show that genes and (i) are important for the host cell invasion of the pathogen, (ii) are not translated as one protein in isolate B2, contradicting the idea of a postulated read-through mechanism, (iii) affect the motility of , (iv) alter the chemotactic behaviour of the pathogen towards formic acid, and (v) are not related to the utilization of formic acid by formate dehydrogenase.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.039438-0
2010-10-01
2019-08-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/10/3123.html?itemId=/content/journal/micro/10.1099/mic.0.039438-0&mimeType=html&fmt=ahah

References

  1. Allos, B. M. ( 2001; ). Campylobacter jejuni infections: update on emerging issues and trends. Clin Infect Dis 32, 1201–1206.[CrossRef]
    [Google Scholar]
  2. Altekruse, S. F., Stern, N. J., Fields, P. I. & Swerdlow, D. L. ( 1999; ). Campylobacter jejuni – an emerging foodborne pathogen. Emerg Infect Dis 5, 28–35.[CrossRef]
    [Google Scholar]
  3. Aravind, L. & Ponting, C. P. ( 1999; ). The cytoplasmic helical linker domain of receptor histidine kinase and methyl-accepting proteins is common to many prokaryotic signalling domains. FEMS Microbiol Lett 176, 111–116.[CrossRef]
    [Google Scholar]
  4. Butler, S. L. & Falke, J. J. ( 1998; ). Cysteine and disulfide scanning reveals two amphiphilic helices in the linker region of the aspartate chemoreceptor. Biochemistry 37, 10746–10756.[CrossRef]
    [Google Scholar]
  5. Colegio, O. R., Griffin, T. J., IV, Grindley, N. D. F. & Galán, J. E. ( 2001; ). In vitro transposition system for efficient generation of random mutants of Campylobacter jejuni. J Bacteriol 183, 2384–2388.[CrossRef]
    [Google Scholar]
  6. Dasti, J. I., Groß, U., Pohl, S., Lugert, R., Weig, M. & Schmidt-Ott, R. ( 2007; ). Role of plasmid-encoded tet(O) gene in tetracycline-resistant clinical isolates of Campylobacter jejuni and Campylobacter coli. J Med Microbiol 56, 833–837.[CrossRef]
    [Google Scholar]
  7. Dasti, J. I., Tareen, A. M., Lugert, R., Zautner, A. E. & Groß, U. ( 2010; ). Campylobacter jejuni: a brief overview on pathogenicity-associated factors and disease-mediating mechanisms. Int J Med Microbiol 300, 205– –211.[CrossRef]
    [Google Scholar]
  8. Elliott, K. T. & DiRita, V. J. ( 2008; ). Characterization of CetA and CetB, a bipartite energy taxis system in Campylobacter jejuni. Mol Microbiol 69, 1091–1103.[CrossRef]
    [Google Scholar]
  9. Everest, P. H., Goossens, H., Butzler, J. P., Lloyd, D., Knutton, S., Ketley, J. M. & Williams, P. H. ( 1992; ). Differentiated Caco-2 cells as a model for enteric invasion by Campylobacter jejuni and C. coli. J Med Microbiol 37, 319–325.[CrossRef]
    [Google Scholar]
  10. Friedman, C. R., Neiman, J., Wegener, H. C. & Tauxe, R. V. ( 2000; ). Epidemiology of Campylobacter jejuni in the United States and other industrialized nations. In Campylobacter, 2nd edn, pp. 121–138. Edited by Nachamkin, I. & Blaser, M. J.. Washington, DC: American Society for Microbiology.
    [Google Scholar]
  11. Golden, N. J. & Acheson, D. W. ( 2002; ). Identification of motility and autoagglutination Campylobacter jejuni mutants by random transposon mutagenesis. Infect Immun 70, 1761–1771.[CrossRef]
    [Google Scholar]
  12. Golden, N. J., Camilli, A. & Acheson, D. W. ( 2000; ). Random transposon mutagenesis of Campylobacter jejuni. Infect Immun 68, 5450–5453.[CrossRef]
    [Google Scholar]
  13. Grant, A. J., Coward, C., Jones, M. A., Woodall, C. A., Barrow, P. A. & Maskell, D. J. ( 2005; ). Signature-tagged transposon mutagenesis studies demonstrate the dynamic nature of cecal colonization of 2-week-old chickens by Campylobacter jejuni. Appl Environ Microbiol 71, 8031–8041.[CrossRef]
    [Google Scholar]
  14. Guerry, P., Ewing, C. P., Hickey, T. E., Prendergast, M. M. & Moran, A. P. ( 2000; ). Sialylation of lipooligosaccharide cores affects immunogenicity and serum resistance of Campylobacter jejuni. Infect Immun 68, 6656–6662.[CrossRef]
    [Google Scholar]
  15. Hartley-Tassell, L. E., Shewell, L. K., Day, C. J., Wilson, J. C., Sandhu, R., Ketley, J. M. & Koroloik, V. ( 2010; ). Identification and characterization of the aspartate chemosensory receptor of Campylobacter jejuni. Mol Microbiol 75, 710–730.
    [Google Scholar]
  16. Hazelbauer, G. L., Falke, J. J. & Parkinson, J. S. ( 2008; ). Bacterial chemoreceptors: high-performance signalling in network arrays. Trends Biochem Sci 33, 9–19.[CrossRef]
    [Google Scholar]
  17. Hendrixson, D. R. & DiRita, V. J. ( 2003; ). Transcription of σ 54-dependent but not σ 28-dependent flagellar genes in Campylobacter jejuni is associated with formation of the flagellar secretory apparatus. Mol Microbiol 50, 687–702.[CrossRef]
    [Google Scholar]
  18. Hendrixson, D. R. & DiRita, V. J. ( 2004; ). Identification of Campylobacter jejuni genes involved in commensal colonization of the chick gastrointestinal tract. Mol Microbiol 52, 471–484.[CrossRef]
    [Google Scholar]
  19. Hendrixson, D. R., Akerley, B. J. & DiRita, V. J. ( 2001; ). Transposon mutagenesis of Campylobacter jejuni identifies a bipartite energy taxis system required for motility. Mol Microbiol 40, 214–224.[CrossRef]
    [Google Scholar]
  20. Hugdahl, M. B., Beery, J. T. & Doyle, M. P. ( 1988; ). Chemotactic behaviour of Campylobacter jejuni. Infect Immun 56, 1560–1566.
    [Google Scholar]
  21. Javed, M. A., Grant, A. J., Bagnall, M. C., Maskell, D. J., Newell, D. G. & Manning, G. ( 2010; ). Transposon mutagenesis in a hyper-invasive clinical isolate of Campylobacter jejuni reveals a number of genes with potential roles in invasion. Microbiology 156, 1134– –1143.[CrossRef]
    [Google Scholar]
  22. Jin, S., Joe, A., Lynett, J., Hani, E. K., Sherman, P. & Chan, V. L. ( 2001; ). JlpA, a novel surface-exposed lipoprotein specific to Campylobacter jejuni, mediates adherence to host epithelial cells. Mol Microbiol 39, 1225–1236.[CrossRef]
    [Google Scholar]
  23. Karlyshev, A. V. & Wren, B. M. ( 2005; ). Development and application of an insertional system for gene delivery and expression in Campylobacter jejuni. Appl Environ Microbiol 71, 4004–4013.[CrossRef]
    [Google Scholar]
  24. Konkel, M. E., Garvis, S. G., Tipton, S. L., Anderson, D. E., Jr & Cieplak, W., Jr ( 1997; ). Identification and molecular cloning of a gene encoding a fibronectin-binding protein (CadF) from Campylobacter jejuni. Mol Microbiol 24, 953–963.[CrossRef]
    [Google Scholar]
  25. Konkel, M. E., Kim, B. J., Rivera-Amill, V. & Garvis, S. G. ( 1999; ). Bacterial secreted proteins are required for the internalization of Campylobacter jejuni into cultured mammalian cells. Mol Microbiol 32, 691–701.[CrossRef]
    [Google Scholar]
  26. Konkel, M. E., Klena, J. D., Rivera-Amill, V., Monteville, M. R., Biswas, D., Raphael, B. & Mickelson, J. ( 2004; ). Secretion of virulence proteins from Campylobacter jejuni is dependent on a functional flagellar export apparatus. J Bacteriol 186, 3296–3303.[CrossRef]
    [Google Scholar]
  27. Konkel, M. E., Larson, C. L. & Flanagan, R. C. ( 2010; ). Campylobacter jejuni FlpA binds fibronectin and is required for maximal host cell adherence. J Bacteriol 192, 68–76.[CrossRef]
    [Google Scholar]
  28. Le Moual, H. & Koshland, D. E., Jr ( 1996; ). Molecular evolution of the C-terminal cytoplasmic domain of a superfamily of bacterial receptors involved in taxis. J Mol Biol 261, 568–585.[CrossRef]
    [Google Scholar]
  29. Lin, J., Wang, Y. & Hoang, K. V. ( 2009; ). Systematic identification of genetic loci required for polymyxin resistance in Campylobacter jejuni using an efficient in vivo transposon mutagenesis system. Foodborne Pathog Dis 6, 173–185.[CrossRef]
    [Google Scholar]
  30. Louwen, R., Heikema, A., van Belkum, A., Ott, A., Gilbert, M., Ang, W., Endtz, H. P., Bergman, M. P. & Nieuwenhuis, E. E. ( 2008; ). The sialylated lipooligosaccharide outer core in Campylobacter jejuni is an important determinant for epithelial cell invasion. Infect Immun 76, 4431–4438.[CrossRef]
    [Google Scholar]
  31. Marchant, J., Wren, B. & Ketley, J. ( 2002; ). Exploiting genome sequences: predictions for mechanisms of Campylobacter chemotaxis. Trends Microbiol 10, 155–159.[CrossRef]
    [Google Scholar]
  32. Morooka, T., Umeda, A. & Amako, K. ( 1985; ). Motility as an intestinal colonization factor for Campylobacter jejuni. J Gen Microbiol 131, 1973–1980.
    [Google Scholar]
  33. Reid, A. N., Pandey, R., Palyada, K., Whitworth, L., Doukhanine, E. & Stintzi, A. ( 2008; ). Identification of Campylobacter jejuni genes contributing to acid adaptation by transcriptional profiling genome-wide mutagenesis. Appl Environ Microbiol 74, 1598–1612.[CrossRef]
    [Google Scholar]
  34. Schmidt-Ott, R., Pohl, S., Burghard, S., Weig, M. & Groß, U. ( 2005; ). Identification and characterization of a major subgroup of conjugative Campylobacter jejuni plasmids. J Infect 50, 12–21.[CrossRef]
    [Google Scholar]
  35. Takata, T., Fujimoto, S. & Amako, K. ( 1992; ). Isolation of nonchemotactic mutants of Campylobacter jejuni and their colonization of the mouse intestinal tract. Infect Immun 60, 3596–3600.
    [Google Scholar]
  36. Vegge, C. S., Brøndsted, L., Li, Y.-P., Bang, D. D. & Ingmer, H. ( 2009; ). Energy taxis drives Campylobacter jejuni towards the most favourable conditions for growth. Appl Environ Microbiol 75, 5308–5314.[CrossRef]
    [Google Scholar]
  37. Weerakoon, D. R., Borden, N. J., Goodson, C. M., Grimes, J. & Olson, J. W. ( 2009; ). The role of respiratory donor enzymes in Campylobacter jejuni host colonization and physiology. Microb Pathog 47, 8–15.[CrossRef]
    [Google Scholar]
  38. Williams, S. B. & Stewart, V. ( 1999; ). Functional similarities among two-component sensors and methyl-accepting chemotaxis proteins suggest a role for linker region amphipathic helices in transmembrane signal transduction. Mol Microbiol 33, 1093–1102.
    [Google Scholar]
  39. Woodall, C. A., Jones, M. A., Barrow, P. A., Hinds, J., Marsden, G. L., Kelly, D. J., Dorrell, N., Wren, B. W. & Maskell, D. J. ( 2005; ). Campylobacter jejuni gene expression in the chick cecum: evidence for adaptation to a low-oxygen environment. Infect Immun 73, 5278–5285.[CrossRef]
    [Google Scholar]
  40. Yao, R., Burr, D. H., Doig, P., Trust, T. J., Niu, H. & Guerry, P. ( 1994; ). Isolation of motile and non-motile insertional mutants of Campylobacter jejuni: the role of motility in adherence and invasion of eukaryotic cells. Mol Microbiol 14, 883–893.[CrossRef]
    [Google Scholar]
  41. Zhang, W., Brooun, A., McCandless, J., Banda, P. & Adam, M. ( 1996; ). Signal transduction in the archeon Halobacterium salinarium is processed through three subfamilies of 13 soluble and membrane-bound transducer proteins. Proc Natl Acad Sci U S A 93, 4649–4654.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.039438-0
Loading
/content/journal/micro/10.1099/mic.0.039438-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error