1887

Abstract

Gene-silencing mechanisms are being shown to be associated with an increasing number of fungal developmental processes. Telomere position effect (TPE) is a eukaryotic phenomenon resulting in gene repression in areas immediately adjacent to telomere caps. Here, TPE is shown to regulate expression of transgenes on the left arm of chromosome III and the right arm of chromosome VI in . Phenotypes found to be associated with transgene repression included reduction in radial growth and the absence of sexual spores; however, these pleiotropic phenotypes were remedied when cultures were grown on media with appropriate supplementation. Simple radial growth and ascosporogenesis assays provided insights into the mechanism of TPE, including a means to determine its extent. These experiments revealed that the KU70 homologue (NkuA) and the heterochromatin-associated proteins HepA, ClrD and HdaA were partially required for transgene silencing. This study indicates that TPE extends at least 30 kb on chromosome III, suggesting that this phenomenon may be important for gene regulation in subtelomeric regions of

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.039255-0
2010-12-01
2020-04-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/12/3522.html?itemId=/content/journal/micro/10.1099/mic.0.039255-0&mimeType=html&fmt=ahah

References

  1. Adhvaryu K. K., Morris S. A., Strahl B. D., Selker E. U.. 2005; Methylation of histone H3 lysine 36 is required for normal development in Neurospora crassa . Eukaryot Cell4:1455–1464
    [Google Scholar]
  2. Arnaud M. B., Chibucos M. C., Costanzo M. C., Crabtree J., Inglis D. O., Lotia A., Orvis J., Shah P., Skrzypek M. S.. other authors 2010; The Aspergillus Genome Database, a curated comparative genomics resource for gene, protein and sequence information for the Aspergillus research community. Nucleic Acids Res38:D420–D427
    [Google Scholar]
  3. Barrales R. R., Jimenez J., Ibeas J. I.. 2008; Identification of novel activation mechanisms for FLO11 regulation in Saccharomyces cerevisiae . Genetics178:145–156
    [Google Scholar]
  4. Bok J. W., Keller N. P.. 2004; LaeA, a regulator of secondary metabolism in Aspergillus spp. Eukaryot Cell3:527–535
    [Google Scholar]
  5. Bok J. W., Chiang Y.-M., Szewczyk E., Reyes-Dominguez Y., Davidson A. D., Sanchez J. F., Lo H. C., Watanabe K., Strauss J.. other authors 2009; Chromatin-level regulation of biosynthetic gene clusters. Nat Chem Biol5:462–464
    [Google Scholar]
  6. Boulton S. J., Jackson S. P.. 1998; Components of the Ku-dependent non-homologous end-joining pathway are involved in telomeric length maintenance and telomeric silencing. EMBO J17:1819–1828
    [Google Scholar]
  7. Braus G. H., Krappmann S., Eckert S. E.. 2002; Sexual development in ascomycetes fruit body formation of Aspergillus nidulans . In Molecular Biology of Fungal Development pp215–244 Edited by Osiewacz H.. New York: Marcel Dekker, Inc;
    [Google Scholar]
  8. Bruggeman J., Debets A. J. M., Hoekstra R. F.. 2004; Selection arena in Aspergillus nidulans . Fungal Genet Biol41:181–188
    [Google Scholar]
  9. Bühler M., Moazed D.. 2007; Transcription and RNAi in heterochromatic gene silencing. Nat Struct Mol Biol14:1041–1048
    [Google Scholar]
  10. Castaño I., Pan S.-J., Zupancic M., Hennequin C., Dujon B., Cormack B. P.. 2005; Telomere length control and transcriptional regulation of subtelomeric adhesins in Candida glabrata . Mol Microbiol55:1246–1258
    [Google Scholar]
  11. Clutterbuck A. J., Farman M. L.. 2008; Aspergillus nidulans linkage map and genome sequence: closing gaps and adding telomeres. In The Aspergilli: Genomics, Medical Aspects, Biotechnology, and Research Methods pp57–73 Edited by Goldman G. H., Osmani S. A.. Boca Raton, FL: CRC Press;
    [Google Scholar]
  12. Dubrana K., Perrod S., Gasser S. M.. 2001; Turning telomeres off and on. Curr Opin Cell Biol13:281–289
    [Google Scholar]
  13. Eckert S. E., Hoffmann B., Wanke C., Braus G. H.. 1999; Sexual development of Aspergillus nidulans in tryptophan auxotrophic strains. Arch Microbiol172:157–166
    [Google Scholar]
  14. Freitag M., Hickey P. C., Khlafallah T. K., Read N. D., Selker E. U.. 2004; HP1 is essential for DNA methylation in Neurospora . Mol Cell13:427–434
    [Google Scholar]
  15. Gottschling D. E., Aparicio O. M., Billington B. L., Zakian V. A.. 1990; Position effect at S. cerevisiae telomeres: reversible repression of Pol II transcription. Cell63:751–762
    [Google Scholar]
  16. Greenstein S., Shadkchan Y., Jadoun J., Sharon C., Markovich S., Osherov N.. 2006; Analysis of the Aspergillus nidulans thaumatin-like cetA gene and evidence for transcriptional repression of pyr4 expression in the cetA -disrupted strain. Fungal Genet Biol43:42–53
    [Google Scholar]
  17. Grewal S. I., Jia S.. 2007; Heterochromatin revisited. Nat Rev Genet8:35–46
    [Google Scholar]
  18. Gwynne D. I., Miller B. L., Miller K. Y., Timberlake W. E.. 1984; Structure and regulated expression of the SpoC1 gene cluster from Aspergillus nidulans . J Mol Biol180:91–109
    [Google Scholar]
  19. Hoffmann B., Wanke C., Lapaglia S. K., Braus G. H.. 2000; c-Jun and RACK1 homologues regulate a control point for sexual development in Aspergillus nidulans . Mol Microbiol37:28–41
    [Google Scholar]
  20. Hoffmeister D., Keller N. P.. 2007; Natural products of filamentous fungi: enzymes, genes, and their regulation. Nat Prod Rep24:393–416
    [Google Scholar]
  21. Jenuwein T., Allis C. D.. 2001; Translating the histone code. Science293:1074–1080
    [Google Scholar]
  22. Laurenson P., Rine J.. 1992; Silencers, silencing, and heritable transcriptional states. Microbiol Rev56:543–560
    [Google Scholar]
  23. Lies C. M., Cheng J., James S. W., Morris N. R., O'Connell M. J., Mirabito P. M.. 1998; BIMAAPC3, a component of the Aspergillus anaphase promoting complex/cyclosome, is required for a G2 checkpoint blocking entry into mitosis in the absence of NIMA function. J Cell Sci111:1453–1465
    [Google Scholar]
  24. Louw C., Young P. R., van Rensburg P., Divol B.. 2010; Epigenetic regulation of PGU1 transcription in Saccharomyces cerevisiae . FEMS Yeast Res10:158–167
    [Google Scholar]
  25. Miller B. L., Miller K. Y., Timberlake W. E.. 1985; Direct and indirect gene replacements in Aspergillus nidulans . Mol Cell Biol5:1714–1721
    [Google Scholar]
  26. Mishra K., Shore D.. 1999; Yeast Ku protein plays a direct role in telomeric silencing and counteracts inhibition by rif proteins. Curr Biol9:1123–1126
    [Google Scholar]
  27. Mondoux M. A., Zakian V. A.. 2007; Subtelomeric elements influence but do not determine silencing levels at Saccharomyces cerevisiae telomeres. Genetics177:2541–2546
    [Google Scholar]
  28. Nayak T., Szewczyk E., Oakley C. E., Osmani A., Ukil L., Murray S. L., Hynes M. J., Osmani S. A., Oakley B. R.. 2006; A versatile and efficient gene-targeting system for Aspergillus nidulans . Genetics172:1557–1566
    [Google Scholar]
  29. Ottaviani A., Gilson E., Magdinier F.. 2008; Telomeric position effect: from the yeast paradigm to human pathologies?. Biochimie90:93–107
    [Google Scholar]
  30. Palmer J. M., Keller N. P.. 2010; Secondary metabolism in fungi: does chromosomal location matter?. Curr Opin Microbiol13:431–436
    [Google Scholar]
  31. Palmer J. M., Perrin R. M., Dagenais T. R., Keller N. P.. 2008; H3K9 methylation regulates growth and development in Aspergillus fumigatus . Eukaryot Cell7:2052–2060
    [Google Scholar]
  32. Rehmeyer C., Li W., Kusaba M., Kim Y.-S., Brown D., Staben C., Dean R., Farman M.. 2006; Organization of chromosome ends in the rice blast fungus, Magnaporthe oryzae . Nucleic Acids Res34:4685–4701
    [Google Scholar]
  33. Rehmeyer C. J., Li W., Kusaba M., Farman M. L.. 2009; The telomere-linked helicase (TLH) gene family in Magnaporthe oryzae : revised gene structure reveals a novel TLH-specific protein motif. Curr Genet55:253–262
    [Google Scholar]
  34. Reyes-Dominguez Y., Bok J. W., Berger H., Shwab E. K., Basheer A., Gallmetzer A., Scazzocchio C., Keller N., Strauss J.. 2010; Heterochromatic marks are associated with the repression of secondary metabolism clusters in Aspergillus nidulans . Mol Microbiol76:1376–1386
    [Google Scholar]
  35. Robellet X., Oestreicher N., Guitton A., Vélot C.. 2010; Gene silencing of transgenes inserted in the Aspergillus nidulans alcM and/or alcS loci. Curr Genet56:341–348
    [Google Scholar]
  36. Rosas-Hernández L. L., Juárez-Reyes A., Arroyo-Helguera O. E., De Las Peñas A., Pan S.-J., Cormack B. P., Castaño I.. 2008; yKu70/yKu80 and Rif1 regulate silencing differentially at telomeres in Candida glabrata . Eukaryot Cell7:2168–2178
    [Google Scholar]
  37. Schoeftner S., Blasco M. A.. 2009; A ‘higher order’ of telomere regulation: telomere heterochromatin and telomeric RNAs. EMBO J28:2323–2336
    [Google Scholar]
  38. Shaaban M., Palmer J., El-Naggar W. A., El-Sokkary M. A., Habib E.-S. E., Keller N. P.. 2010; Involvement of transposon-like elements in penicillin gene cluster regulation. Fungal Genet Biol47:423–432
    [Google Scholar]
  39. Shimizu K., Keller N. P.. 2001; Genetic involvement of a cAMP-dependent protein kinase in a G protein signaling pathway regulating morphological and chemical transitions in Aspergillus nidulans . Genetics157:591–600
    [Google Scholar]
  40. Shwab E. K., Bok J. W., Tribus M., Galehr J., Graessle S., Keller N. P.. 2007; Histone deacetylase activity regulates chemical diversity in Aspergillus . Eukaryot Cell6:1656–1664
    [Google Scholar]
  41. Smith K. M., Kothe G. O., Matsen C. B., Khlafallah T. K., Adhvaryu K. K., Hemphill M., Freitag M., Motamedi M. R., Selker E. U.. 2008; The fungus Neurospora crassa displays telomeric silencing mediated by multiple sirtuins and by methylation of histone H3 lysine 9. Epigenetics Chromatin1:5
    [Google Scholar]
  42. Szewczyk E., Nayak T., Oakley C. E., Edgerton H., Xiong Y., Taheri-Talesh N., Osmani S. A., Oakley B. R.. 2006; Fusion PCR and gene targeting in Aspergillus nidulans . Nat Protoc1:3111–3120
    [Google Scholar]
  43. Tamaru H., Selker E. U.. 2001; A histone H3 methyltransferase controls DNA methylation in Neurospora crassa . Nature414:277–283
    [Google Scholar]
  44. Tamaru H., Zhang X., McMillen D., Singh P. B., Nakayama J., Grewal S. I., Allis C. D., Cheng X., Selker E. U.. 2003; Trimethylated lysine 9 of histone H3 is a mark for DNA methylation in Neurospora crassa . Nat Genet34:75–79
    [Google Scholar]
  45. Timberlake W. E.. 1980; Developmental gene regulation in Aspergillus nidulans . Dev Biol78:497–510
    [Google Scholar]
  46. Tsitsigiannis D. I., Zarnowski R., Keller N. P.. 2004; The lipid body protein, PpoA, coordinates sexual and asexual sporulation in Aspergillus nidulans . J Biol Chem279:11344–11353
    [Google Scholar]
  47. Yang L., Ukil L., Osmani A., Nahm F., Davies J., De Souza C. P., Dou X., Perez-Balaguer A., Osmani S. A.. 2004; Rapid production of gene replacement constructs and generation of a green fluorescent protein-tagged centromeric marker in Aspergillus nidulans . Eukaryot Cell3:1359–1362
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.039255-0
Loading
/content/journal/micro/10.1099/mic.0.039255-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error