1887

Abstract

Methanol dehydrogenase-like protein XoxF of AM1 exhibits a sequence identity of 50 % to the catalytic subunit MxaF of periplasmic methanol dehydrogenase in the same organism. The latter has been characterized in detail, identified as a pyrroloquinoline quinone (PQQ)-dependent protein, and shown to be essential for growth in the presence of methanol in this methylotrophic model bacterium. In contrast, the function of XoxF in AM1 has not yet been elucidated, and a phenotype remained to be described for a mutant. Here, we found that a mutant is less competitive than the wild-type during colonization of the phyllosphere of , indicating a function for XoxF during plant colonization. A comparison of the growth parameters of the AM1 mutant with those of the wild-type during exponential growth revealed a reduced methanol uptake rate and a reduced growth rate for the mutant of about 30 %. Experiments with cells starved for carbon revealed that methanol oxidation in the mutant occurs less rapidly compared with the wild-type, especially in the first minutes after methanol addition. A distinct phenotype for the mutant was also observed when formate and CO production were measured after the addition of methanol or formaldehyde to starved cells. The wild-type, but not the mutant, accumulated formate upon substrate addition and had a 1 h lag in CO production under the experimental conditions. Determination of the kinetic properties of the purified enzyme showed a conversion capacity for both formaldehyde and methanol. The results suggest that XoxF is involved in one-carbon metabolism in AM1.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.038570-0
2010-08-01
2024-11-03
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/8/2575.html?itemId=/content/journal/micro/10.1099/mic.0.038570-0&mimeType=html&fmt=ahah

References

  1. Abanda-Nkpwatt D., Musch M., Tschiersch J., Boettner M., Schwab W. 2006; Molecular interaction between Methylobacterium extorquens and seedlings: growth promotion, methanol consumption, and localization of the methanol emission site. J Exp Bot 57:4025–4032
    [Google Scholar]
  2. Afolabi P. R., Mohammed F., Amaratunga K., Majekodunmi O., Dales S. L., Gill R., Thompson D., Cooper J. B., Wood S. P. other authors 2001; Site-directed mutagenesis and X-ray crystallography of the PQQ-containing quinoprotein methanol dehydrogenase and its electron acceptor, cytochrome cL. Biochemistry 40:9799–9809
    [Google Scholar]
  3. Anderson D. J., Morris C. J., Nunn D. N., Anthony C., Lidstrom M. E. 1990; Nucleotide sequence of the Methylobacterium extorquens AM1 moxF and moxJ genes involved in methanol oxidation. Gene 90:173–176
    [Google Scholar]
  4. Anthony C. 1982 The Biochemistry of Methylotrophs London: Academic Press;
  5. Anthony C. 1986; The bacterial oxidation of methane and methanol. Adv Microb Physiol 27:113–210
    [Google Scholar]
  6. Anthony C., Williams P. 2003; The structure and mechanism of methanol dehydrogenase. Biochim Biophys Acta 1647:18–23
    [Google Scholar]
  7. Anthony C., Zatman L. J. 1964; The methanol-oxidizing enzyme of Pseudomonas sp. M 27. Biochem J 92:614–621
    [Google Scholar]
  8. Anthony C., Zatman L. J. 1965; The alcohol dehydrogenase of Pseudomonas sp. M27. Biochem J 96:808–812
    [Google Scholar]
  9. Anthony C., Zatman L. J. 1967; The microbial oxidation of methanol: purification and properties of the alcohol dehydrogenase of Pseudomonas sp. M27. Biochem J 104:953–959
    [Google Scholar]
  10. Bamforth C. W., Quayle J. R. 1978; The dye-linked alcohol dehydrogenase of Rhodopseudomonas acidophila. Comparison with dye-linked methanol dehydrogenases. Biochem J 169:677–686
    [Google Scholar]
  11. Bamforth C. W., Quayle J. R. 1979; Structural aspects of the dye-linked alcohol-dehydrogenase of Rhodopseudomonas acidophila. Biochem J 181:517–524
    [Google Scholar]
  12. Barber R. D., Donohue T. J. 1998; Function of a glutathione-dependent formaldehyde dehydrogenase in Rhodobacter sphaeroides formaldehyde oxidation and assimilation. Biochemistry 37:530–537
    [Google Scholar]
  13. Barber R. D., Rott M. A., Donohue T. J. 1996; Characterization of a glutathione-dependent formaldehyde dehydrogenase from Rhodobacter sphaeroides. J Bacteriol 178:1386–1393
    [Google Scholar]
  14. Basford R. E., Huennekens F. M. 1955; Studies on thiols. 1. Oxidation of thiol groups by 2,6-dichlorophenol indophenol. J Am Chem Soc 77:3873–3877
    [Google Scholar]
  15. Bolbot J. A., Anthony C. 1980; The metabolism of 1,2-propanediol by the facultative methylotroph Pseudomonas AM1. J Gen Microbiol 120:245–254
    [Google Scholar]
  16. Bosch G., Skovran E., Xia Q. W., Wang T. S., Taub F., Miller J. A., Lidstrom M. E., Hackett M. 2008; Comprehensive proteomics of Methylobacterium extorquens AM1 metabolism under single carbon and nonmethylotrophic conditions. Proteomics 8:3494–3505
    [Google Scholar]
  17. Bosch G., Wang T., Latypova E., Kalyuzhnaya M. G., Hackett M., Chistoserdova L. 2009; Insights into the physiology of Methylotenera mobilis as revealed by metagenome-based shotgun proteomic analysis. Microbiology 155:1103–1110
    [Google Scholar]
  18. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254
    [Google Scholar]
  19. Chistoserdov A. Y., Chistoserdova L. V., McIntire W. S., Lidstrom M. E. 1994; Genetic organization of the mau gene cluster in Methylobacterium extorquens AM1: complete nucleotide sequence and generation and characteristics of mau mutants. J Bacteriol 176:4052–4065
    [Google Scholar]
  20. Chistoserdova L., Lidstrom M. E. 1997; Molecular and mutational analysis of a DNA region separating two methylotrophy gene clusters in Methylobacterium extorquens AM1. Microbiology 143:1729–1736
    [Google Scholar]
  21. Chistoserdova L., Vorholt J. A., Thauer R. K., Lidstrom M. E. 1998; C1 transfer enzymes and coenzymes linking methylotrophic bacteria and methanogenic Archaea. Science 281:99–102
    [Google Scholar]
  22. Chistoserdova L., Chen S. W., Lapidus A., Lidstrom M. E. 2003; Methylotrophy in Methylobacterium extorquens AM1 from a genomic point of view. J Bacteriol 185:2980–2987
    [Google Scholar]
  23. Chistoserdova L., Laukel M., Portais J. C., Vorholt J. A., Lidstrom M. E. 2004; Multiple formate dehydrogenase enzymes in the facultative methylotroph Methylobacterium extorquens AM1 are dispensable for growth on methanol. J Bacteriol 186:22–28
    [Google Scholar]
  24. Chistoserdova L., Crowther G. J., Vorholt J. A., Skovran E., Portais J. C., Lidstrom M. E. 2007; Identification of a fourth formate dehydrogenase in Methylobacterium extorquens AM1 and confirmation of the essential role of formate oxidation in methylotrophy. J Bacteriol 189:9076–9081
    [Google Scholar]
  25. Chistoserdova L., Kalyuzhnaya M. G., Lidstrom M. E. 2009; The expanding world of methylotrophic metabolism. Annu Rev Microbiol 63:477–499
    [Google Scholar]
  26. Corpe W. A., Rheem S. 1989; Ecology of the methylotrophic bacteria on living leaf surfaces. FEMS Microbiol Ecol 62:243–250
    [Google Scholar]
  27. Crowther G. J., Kosály G., Lidstrom M. E. 2008; Formate as the main branch point for methylotrophic metabolism in Methylobacterium extorquens AM1. J Bacteriol 190:5057–5062
    [Google Scholar]
  28. Day D. J., Anthony C. 1990; Methanol dehydrogenase from Methylobacterium extorquens AM1. Methods Enzymol 188:210–216
    [Google Scholar]
  29. Delmotte N., Knief C., Chaffron S., Innerebner G., Roschitzki B., Schlapbach R., von Mering C., Vorholt J. A. 2009; Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proc Natl Acad Sci U S A 106:16428–16433
    [Google Scholar]
  30. Duine J. A., Frank J. Jr 1980; Studies on methanol dehydrogenase from Hyphomicrobium X. Isolation of an oxidized form of the enzyme. Biochem J 187:213–219
    [Google Scholar]
  31. Duine J. A., Frank J., Westerling J. 1978; Purification and properties of methanol dehydrogenase from Hyphomicrobium X. Biochim Biophys Acta 524:277–287
    [Google Scholar]
  32. Erb T. J., Berg I. A., Brecht V., Muller M., Fuchs G., Alber B. E. 2007; Synthesis of C-5-dicarboxylic acids from C-2-units involving crotonyl-CoA carboxylase/reductase: the ethylmalonyl-CoA pathway. Proc Natl Acad Sci U S A 104:10631–10636
    [Google Scholar]
  33. Fall R., Benson A. A. 1996; Leaf methanol – the simplest natural product from plants. Trends Plant Sci 1:296–301
    [Google Scholar]
  34. Ford S., Page M. D., Anthony C. 1985; The role of a methanol dehydrogenase modifier protein and aldehyde dehydrogenase in the growth of Pseudomonas AM1 on 1,2-propanediol. J Gen Microbiol 131:2173–2182
    [Google Scholar]
  35. Ghosh R., Quayle J. R. 1979; Phenazine ethosulfate as a preferred electron-acceptor to phenazine methosulfate in dye-linked enzyme assays. Anal Biochem 99:112–117
    [Google Scholar]
  36. Ghosh R., Quayle J. R. 1981; Purification and properties of the methanol dehydrogenase from Methylophilus methylotrophus. Biochem J 199:245–250
    [Google Scholar]
  37. Goodwin M. G., Anthony C. 1996; Characterization of a novel methanol dehydrogenase containing a Ba2+ ion at the active site. Biochem J 318:673–679
    [Google Scholar]
  38. Gourion B., Rossignol M., Vorholt J. A. 2006; A proteomic study of Methylobacterium extorquens reveals a response regulator essential for epiphytic growth. Proc Natl Acad Sci U S A 103:13186–13191
    [Google Scholar]
  39. Hagemeier C. H., Chistoserdova L., Lidstrom M. E., Thauer R. K., Vorholt J. A. 2000; Characterization of a second methylene tetrahydromethanopterin dehydrogenase from Methylobacterium extorquens AM1. Eur J Biochem 267:3762–3769
    [Google Scholar]
  40. Harms N., Ras J., Koning S., Reijnders W. N. M., Stouthamer A. H., Van Spanning R. J. M. 1996; Genetics of C1 metabolism regulation in Paracoccus denitrificans. In Microbial Growth on C1 Compounds pp 126–132 Edited by Lidstrom M. E., Tabita F. R. Dordrecht: Kluwer Academic Publishers;
    [Google Scholar]
  41. Hirano S. S., Upper C. D. 1991; Bacterial community dynamics. In Microbial Ecology on Leaves pp 271–294 Edited by Andrews J. H., Hirano S. S. New York: Springer-Verlag;
    [Google Scholar]
  42. Hüve K., Christ M. M., Kleist E., Uerlings R., Niinemets U., Walter A., Wildt J. 2007; Simultaneous growth and emission measurements demonstrate an interactive control of methanol release by leaf expansion and stomata. J Exp Bot 58:1783–1793
    [Google Scholar]
  43. Jewell T., Huston S. L., Nelson D. C. 2008; Methylotrophy in freshwater Beggiatoa alba strains. Appl Environ Microbiol 74:5575–5578
    [Google Scholar]
  44. Kalyuzhnaya M. G., Hristova K. R., Lidstrom M. E., Chistoserdova L. 2008; Characterization of a novel methanol dehydrogenase in representatives of Burkholderiales: implications for environmental detection of methylotrophy and evidence for convergent evolution. J Bacteriol 190:3817–3823
    [Google Scholar]
  45. Kalyuzhnaya M. G., Martens-Habbena W., Wang T., Hackett M., Stolyar S. M., Stahl D. A., Lidstrom M. E., Chistoserdova L. 2009; Methylophilaceae link methanol oxidation to denitrification in freshwater lake sediment as suggested by stable isotope probing and pure culture analysis. Environ Microbiol Rep 1:385–392
    [Google Scholar]
  46. Kane S. R., Chakicherla A. Y., Chain P. S. G., Schmidt R., Shin M. W., Legler T. C., Scow K. M., Larimer F. W., Lucas S. M. other authors 2007; Whole-genome analysis of the methyl tert-butyl ether-degrading beta-proteobacterium Methylibium petroleiphilum PM1. J Bacteriol 189:1931–1945
    [Google Scholar]
  47. Kiefer P., Buchhaupt M., Christen P., Kaup B., Schrader J., Vorholt J. A. 2009; Metabolite profiling uncovers plasmid-induced cobalt limitation under methylotrophic growth conditions. PLoS One 4:e7831
    [Google Scholar]
  48. Knief C., Frances L., Cantet F., Vorholt J. A. 2008; Cultivation-independent characterization of Methylobacterium populations in the plant phyllosphere by automated ribosomal intergenic spacer analysis. Appl Environ Microbiol 74:2218–2228
    [Google Scholar]
  49. Knief C., Ramette A., Frances L., Alonso-Blanco C., Vorholt J. A. 2010; Site and plant species are important determinants of the Methylobacterium community composition in the plant phyllosphere. ISME J 4:719–728
    [Google Scholar]
  50. Laukel M., Chistoserdova L., Lidstrom M. E., Vorholt J. A. 2003; The tungsten-containing formate dehydrogenase from Methylobacterium extorquens AM1: purification and properties. Eur J Biochem 270:325–333
    [Google Scholar]
  51. Long A. R., Anthony C. 1990; Modifier protein for methanol dehydrogenase of methylotrophs. Methods Enzymol 188:216–222
    [Google Scholar]
  52. Long A. R., Anthony C. 1991; The periplasmic modifier protein for methanol dehydrogenase in the methylotrophs Methylophilus methylotrophus and Paracoccus denitrificans. J Gen Microbiol 137:2353–2360
    [Google Scholar]
  53. Madhaiyan M., Poonguzhali S., Kwon S. W., Sa T. M. 2009; Methylobacterium phyllosphaerae sp. nov., a pink-pigmented, facultative methylotroph from the phyllosphere of rice. Int J Syst Evol Microbiol 59:22–27
    [Google Scholar]
  54. Marx C. J., Lidstrom M. E. 2001; Development of improved versatile broad-host-range vectors for use in methylotrophs and other Gram-negative bacteria. Microbiology 147:2065–2075
    [Google Scholar]
  55. Marx C. J., Lidstrom M. E. 2004; Development of an insertional expression vector system for Methylobacterium extorquens AM1 and generation of null mutants lacking mtdA and/or fch. Microbiology 150:9–19
    [Google Scholar]
  56. Marx C. J., Chistoserdova L., Lidstrom M. E. 2003; Formaldehyde-detoxifying role of the tetrahydromethanopterin-linked pathway in Methylobacterium extorquens AM1. J Bacteriol 185:7160–7168
    [Google Scholar]
  57. Muhlencoert E., Müller P. 2002; A novel two-component system of Bradyrhizobium japonicum: ElmS and ElmR are encoded in diverse orientations. DNA Seq 13:93–102
    [Google Scholar]
  58. Murashige T., Skoog F. 1962; A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497
    [Google Scholar]
  59. Nunn D. N., Lidstrom M. E. 1986a; Isolation and complementation analysis of 10 methanol oxidation mutant classes and identification of the methanol dehydrogenase structural gene of Methylobacterium sp. strain AM1. J Bacteriol 166:581–590
    [Google Scholar]
  60. Nunn D. N., Lidstrom M. E. 1986b; Phenotypic characterization of 10 methanol oxidation mutant classes in Methylobacterium sp. strain AM1. J Bacteriol 166:591–597
    [Google Scholar]
  61. Nunn D. N., Day D., Anthony C. 1989; The second subunit of methanol dehydrogenase of Methylobacterium extorquens AM1. Biochem J 260:857–862
    [Google Scholar]
  62. Page M. D., Anthony C. 1986; Regulation of formaldehyde oxidation by the methanol dehydrogenase modifier proteins of Methylophilus methylotrophus and Pseudomonas AM1. J Gen Microbiol 132:1553–1563
    [Google Scholar]
  63. Palmer T., Sargent F., Berks B. C. 2005; Export of complex cofactor-containing proteins by the bacterial Tat pathway. Trends Microbiol 13:175–180
    [Google Scholar]
  64. Peel D., Quayle J. R. 1961; Microbial growth on C1 compounds. 1. Isolation and characterization of Pseudomonas AM 1. Biochem J 81:465–469
    [Google Scholar]
  65. Peyraud R., Kiefer P., Christen P., Massou S., Portais J. C., Vorholt J. A. 2009; Demonstration of the ethylmalonyl-CoA pathway by using 13C metabolomics. Proc Natl Acad Sci U S A 106:4846–4851
    [Google Scholar]
  66. Pomper B. K., Vorholt J. A. 2001; Characterization of the formyltransferase (Ftr) from Methylobacterium extorquens AM1. Eur J Biochem 268:4769–4775
    [Google Scholar]
  67. Pomper B. K., Saurel O., Milon A., Vorholt J. A. 2002; Generation of formate by the formyltransferase/hydrolase complex (Fhc) from Methylobacterium extorquens AM1. FEBS Lett 523:133–137
    [Google Scholar]
  68. Ras J., Reijnders W. N., Van Spanning R. J., Harms N., Oltmann L. F., Stouthamer A. H. 1991; Isolation, sequencing, and mutagenesis of the gene encoding cytochrome c553i of Paracoccus denitrificans and characterization of the mutant strain. J Bacteriol 173:6971–6979
    [Google Scholar]
  69. Ras J., Van Ophem P. W., Reijnders W. N., Van Spanning R. J., Duine J. A., Stouthamer A. H., Harms N. 1995; Isolation, sequencing, and mutagenesis of the gene encoding NAD- and glutathione-dependent formaldehyde dehydrogenase (GD-FALDH) from Paracoccus denitrificans, in which GD-FALDH is essential for methylotrophic growth. J Bacteriol 177:247–251
    [Google Scholar]
  70. Sahm H., Cox R. B., Quayle J. R. 1976; Metabolism of methanol by Rhodopseudomonas acidophila. J Gen Microbiol 94:313–322
    [Google Scholar]
  71. Schäfer H. 2007; Isolation of Methylophaga spp. from marine dimethylsulfide-degrading enrichment cultures and identification of polypeptides induced during growth on dimethylsulfide. Appl Environ Microbiol 73:2580–2591
    [Google Scholar]
  72. Schlesier B., Bréton F., Mock H. P. 2003; A hydroponic culture system for growing Arabidopsis thaliana plantlets under sterile conditions. Plant Mol Biol Rep 21:449–456
    [Google Scholar]
  73. Schrader J., Schilling M., Holtmann D., Sell D., Filho M. V., Marx A., Vorholt J. A. 2009; Methanol-based industrial biotechnology: current status and future perspectives of methylotrophic bacteria. Trends Biotechnol 27:107–115
    [Google Scholar]
  74. Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. 1985; Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85
    [Google Scholar]
  75. Springer A. L., Chou H. H., Fan W. H., Lee E., Lidstrom M. E. 1995; Methanol oxidation mutants in Methylobacterium extorquens AM1: identification of new genetic complementation groups. Microbiology 141:2985–2993
    [Google Scholar]
  76. Sudtachat N., Ito N., Itakura M., Masuda S., Eda S., Mitsui H., Kawaharada Y., Minamisawa K. 2009; Aerobic vanillate degradation and C-1 compound metabolism in Bradyrhizobium japonicum. Appl Environ Microbiol 75:5012–5017
    [Google Scholar]
  77. Sy A., Timmers A. C., Knief C., Vorholt J. A. 2005; Methylotrophic metabolism is advantageous for Methylobacterium extorquens during colonization of Medicago truncatula under competitive conditions. Appl Environ Microbiol 71:7245–7252
    [Google Scholar]
  78. Vorholt J. A. 2002; Cofactor-dependent pathways of formaldehyde oxidation in methylotrophic bacteria. Arch Microbiol 178:239–249
    [Google Scholar]
  79. Vorholt J. A., Marx C. J., Lidstrom M. E., Thauer R. K. 2000; Novel formaldehyde-activating enzyme in Methylobacterium extorquens AM1 required for growth on methanol. J Bacteriol 182:6645–6650
    [Google Scholar]
  80. Vuilleumier S., Chistoserdova L., Lee M. C., Bringel F., Lajus A., Zhou Y., Gourion B., Barbe V., Chang J. other authors 2009; Methylobacterium genome sequences: a reference blueprint to investigate microbial metabolism of C1 compounds from natural and industrial sources. PLoS One 4:e5584
    [Google Scholar]
  81. Williams P. A., Coates L., Mohammed F., Gill R., Erskine P. T., Coker A., Wood S. P., Anthony C., Cooper J. B. 2005; The atomic resolution structure of methanol dehydrogenase from Methylobacterium extorquens. Acta Crystallogr D Biol Crystallogr 61:75–79
    [Google Scholar]
  82. Wilson S. M., Gleisten M. P., Donohue T. J. 2008; Identification of proteins involved in formaldehyde metabolism by Rhodobacter sphaeroides. Microbiology 154:296–305
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.038570-0
Loading
/content/journal/micro/10.1099/mic.0.038570-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error