1887

Abstract

In the genome of NTUH-K2044, nine fimbrial gene clusters were identified. Besides type 1 and type 3 fimbriae, the others are novel and were named Kpa, Kpb, Kpc, Kpd, Kpe, Kpf and Kpg fimbriae. Prevalence analysis among 105 clinical isolates revealed that the genes were highly associated with the K1 serotype isolates. Induced expression of the recombinant genes in resulted in Kpc fimbriation and increased biofilm formation. A putative site-specific recombinase encoding gene and a 302 bp intergenic DNA flanked by 11 bp inverted repeats, namely , were identified in the upstream region of the genes. Using LacZ as the reporter, a dramatic difference in promoter activity of in two different orientations was observed and accordingly assigned as ON and OFF phase. expression was found to be able to invert from phase ON to OFF and vice versa. Using the two-plasmid system, expression of , encoding the major component of the Kpc fimbriae, could be observed upon the induced expression of . These results indicate that KpcI is involved in the regulation of Kpc fimbriation in a phase-variable manner.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.038158-0
2010-07-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/7/1983.html?itemId=/content/journal/micro/10.1099/mic.0.038158-0&mimeType=html&fmt=ahah

References

  1. Abremski, K. E. & Hoess, R. H. ( 1992; ). Evidence for a second conserved arginine residue in the integrase family of recombination proteins. Protein Eng 5, 87–91.[CrossRef]
    [Google Scholar]
  2. Allen, B. L., Gerlach, G. F. & Clegg, S. ( 1991; ). Nucleotide sequence and functions of mrk determinants necessary for expression of type 3 fimbriae in Klebsiella pneumoniae. J Bacteriol 173, 916–920.
    [Google Scholar]
  3. Bateman, A., Coin, L., Durbin, R., Finn, R. D., Hollich, V., Griffiths-Jones, S., Khanna, A., Marshall, M., Moxon, S. & other authors ( 2004; ). The Pfam protein families database. Nucleic Acids Res 32, D138–D141.[CrossRef]
    [Google Scholar]
  4. Blomfield, I. C., McClain, M. S., Princ, J. A., Calie, P. J. & Eisenstein, B. I. ( 1991; ). Type 1 fimbriation and fimE mutants of Escherichia coli K-12. J Bacteriol 173, 5298–5307.
    [Google Scholar]
  5. Di Martino, P., Bertin, Y., Girardeau, J. P., Livrelli, V., Joly, B. & Darfeuille-Michaud, A. ( 1995; ). Molecular characterization and adhesive properties of CF29K, an adhesin of Klebsiella pneumoniae strains involved in nosocomial infections. Infect Immun 63, 4336–4344.
    [Google Scholar]
  6. Eddy, S. R. ( 1998; ). Profile hidden Markov models. Bioinformatics 14, 755–763.[CrossRef]
    [Google Scholar]
  7. Esposito, D. & Scocca, J. J. ( 1997; ). The integrase family of tyrosine recombinases: evolution of a conserved active site domain. Nucleic Acids Res 25, 3605–3614.[CrossRef]
    [Google Scholar]
  8. Fang, C. T., Chuang, Y. P., Shun, C. T., Chang, S. C. & Wang, J. T. ( 2004; ). A novel virulence gene in Klebsiella pneumoniae strains causing primary liver abscess and septic metastatic complications. J Exp Med 199, 697–705.[CrossRef]
    [Google Scholar]
  9. Favre-Bonte, S., Darfeuille-Michaud, A. & Forestier, C. ( 1995; ). Aggregative adherence of Klebsiella pneumoniae to human intestine-407 cells. Infect Immun 63, 1318–1328.
    [Google Scholar]
  10. Fouts, D. E., Tyler, H. L., DeBoy, R. T., Daugherty, S., Ren, Q., Badger, J. H., Durkin, A. S., Huot, H., Shrivastava, S. & other authors ( 2008; ). Complete genome sequence of the N2-fixing broad host range endophyte Klebsiella pneumoniae 342 and virulence predictions verified in mice. PLoS Genet 4, e1000141 [CrossRef]
    [Google Scholar]
  11. Fung, C. P., Chang, F. Y., Lee, S. C., Hu, B. S., Kuo, B. I., Liu, C. Y., Ho, M. & Siu, L. K. ( 2002; ). A global emerging disease of Klebsiella pneumoniae liver abscess: is serotype K1 an important factor for complicated endophthalmitis? Gut 50, 420–424.[CrossRef]
    [Google Scholar]
  12. Gally, D. L., Bogan, J. A., Eisenstein, B. I. & Blomfield, I. C. ( 1993; ). Environmental regulation of the fim switch controlling type 1 fimbrial phase variation in Escherichia coli K-12: effects of temperature and media. J Bacteriol 175, 6186–6193.
    [Google Scholar]
  13. Guzman, L. M., Belin, D., Carson, M. J. & Beckwith, J. ( 1995; ). Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol 177, 4121–4130.
    [Google Scholar]
  14. Han, Y. W., Gumport, R. I. & Gardner, J. F. ( 1994; ). Mapping the functional domains of bacteriophage lambda integrase protein. J Mol Biol 235, 908–925.[CrossRef]
    [Google Scholar]
  15. Honarvar, S., Choi, B. K. & Schifferli, D. M. ( 2003; ). Phase variation of the 987P-like CS18 fimbriae of human enterotoxigenic Escherichia coli is regulated by site-specific recombinases. Mol Microbiol 48, 157–171.[CrossRef]
    [Google Scholar]
  16. Huang, Y. J., Wu, C. C., Chen, M. C., Fung, C. P. & Peng, H. L. ( 2006; ). Characterization of the type 3 fimbriae with different MrkD adhesins: possible role of the MrkD containing an RGD motif. Biochem Biophys Res Commun 350, 537–542.[CrossRef]
    [Google Scholar]
  17. Huang, Y. J., Liao, H. W., Wu, C. C. & Peng, H. L. ( 2009; ). MrkF is a component of type 3 fimbriae in Klebsiella pneumoniae. Res Microbiol 160, 71–79.[CrossRef]
    [Google Scholar]
  18. Humphries, A. D., Townsend, S. M., Kingsley, R. A., Nicholson, T. L., Tsolis, R. M. & Baumler, A. J. ( 2001; ). Role of fimbriae as antigens and intestinal colonization factors of Salmonella serovars. FEMS Microbiol Lett 201, 121–125.[CrossRef]
    [Google Scholar]
  19. Humphries, A., Deridder, S. & Baumler, A. J. ( 2005; ). Salmonella enterica serotype Typhimurium fimbrial proteins serve as antigens during infection of mice. Infect Immun 73, 5329–5338.[CrossRef]
    [Google Scholar]
  20. Kil, K. S., Darouiche, R. O., Hull, R. A., Mansouri, M. D. & Musher, D. M. ( 1997; ). Identification of a Klebsiella pneumoniae strain associated with nosocomial urinary tract infection. J Clin Microbiol 35, 2370–2374.
    [Google Scholar]
  21. Klemm, P. ( 1986; ). Two regulatory fim genes, fimB and fimE, control the phase variation of type 1 fimbriae in Escherichia coli. EMBO J 5, 1389–1393.
    [Google Scholar]
  22. Klemm, P. & Schembri, M. A. ( 2000; ). Bacterial adhesins: function and structure. Int J Med Microbiol 290, 27–35.[CrossRef]
    [Google Scholar]
  23. Lederman, E. R. & Crum, N. F. ( 2005; ). Pyogenic liver abscess with a focus on Klebsiella pneumoniae as a primary pathogen: an emerging disease with unique clinical characteristics. Am J Gastroenterol 100, 322–331.[CrossRef]
    [Google Scholar]
  24. Lee, C. H., Leu, H. S., Wu, T. S., Su, L. H. & Liu, J. W. ( 2005; ). Risk factors for spontaneous rupture of liver abscess caused by Klebsiella pneumoniae. Diagn Microbiol Infect Dis 52, 79–84.[CrossRef]
    [Google Scholar]
  25. Li, X., Lockatell, C. V., Johnson, D. E. & Mobley, H. L. ( 2002; ). Identification of MrpI as the sole recombinase that regulates the phase variation of MR/P fimbria, a bladder colonization factor of uropathogenic Proteus mirabilis. Mol Microbiol 45, 865–874.[CrossRef]
    [Google Scholar]
  26. Lin, C. T., Huang, T. Y., Liang, W. C. & Peng, H. L. ( 2006; ). Homologous response regulators KvgA, KvhA and KvhR regulate the synthesis of capsular polysaccharide in Klebsiella pneumoniae CG43 in a coordinated manner. J Biochem 140, 429–438.[CrossRef]
    [Google Scholar]
  27. Link, A. J., Phillips, D. & Church, G. M. ( 1997; ). Methods for generating precise deletions and insertions in the genome of wild-type Escherichia coli: application to open reading frame characterization. J Bacteriol 179, 6228–6237.
    [Google Scholar]
  28. Low, A. S., Holden, N., Rosser, T., Roe, A. J., Constantinidou, C., Hobman, J. L., Smith, D. G., Low, J. C. & Gally, D. L. ( 2006; ). Analysis of fimbrial gene clusters and their expression in enterohaemorrhagic Escherichia coli O157 : H7. Environ Microbiol 8, 1033–1047.[CrossRef]
    [Google Scholar]
  29. McClain, M. S., Blomfield, I. C. & Eisenstein, B. I. ( 1991; ). Roles of fimB and fimE in site-specific DNA inversion associated with phase variation of type 1 fimbriae in Escherichia coli. J Bacteriol 173, 5308–5314.
    [Google Scholar]
  30. Nuccio, S. P., Chessa, D., Weening, E. H., Raffatellu, M., Clegg, S. & Baumler, A. J. ( 2007; ). SIMPLE approach for isolating mutants expressing fimbriae. Appl Environ Microbiol 73, 4455–4462.[CrossRef]
    [Google Scholar]
  31. Nunes-Duby, S. E., Kwon, H. J., Tirumalai, R. S., Ellenberger, T. & Landy, A. ( 1998; ). Similarities and differences among 105 members of the Int family of site-specific recombinases. Nucleic Acids Res 26, 391–406.[CrossRef]
    [Google Scholar]
  32. Ogawa, W., Li, D. W., Yu, P., Begum, A., Mizushima, T., Kuroda, T. & Tsuchiya, T. ( 2005; ). Multidrug resistance in Klebsiella pneumoniae MGH78578 and cloning of genes responsible for the resistance. Biol Pharm Bull 28, 1505–1508.[CrossRef]
    [Google Scholar]
  33. Pizarro-Cerda, J. & Cossart, P. ( 2006; ). Bacterial adhesion and entry into host cells. Cell 124, 715–727.[CrossRef]
    [Google Scholar]
  34. Podschun, R. & Ullmann, U. ( 1998; ). Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev 11, 589–603.
    [Google Scholar]
  35. Soto, G. E. & Hultgren, S. J. ( 1999; ). Bacterial adhesins: common themes and variations in architecture and assembly. J Bacteriol 181, 1059–1071.
    [Google Scholar]
  36. Struve, C., Bojer, M. & Krogfelt, K. A. ( 2008; ). Characterization of Klebsiella pneumoniae type 1 fimbriae by detection of phase variation during colonization and infection and impact on virulence. Infect Immun 76, 4055–4065.[CrossRef]
    [Google Scholar]
  37. Struve, C., Bojer, M. & Krogfelt, K. A. ( 2009; ). Identification of a conserved chromosomal region encoding Klebsiella pneumoniae type 1 and type 3 fimbriae and assessment of the role of fimbriae in pathogenicity. Infect Immun 77, 5016–5024.[CrossRef]
    [Google Scholar]
  38. Townsend, S. M., Kramer, N. E., Edwards, R., Baker, S., Hamlin, N., Simmonds, M., Stevens, K., Maloy, S., Parkhill, J. & other authors ( 2001; ). Salmonella enterica serovar Typhi possesses a unique repertoire of fimbrial gene sequences. Infect Immun 69, 2894–2901.[CrossRef]
    [Google Scholar]
  39. Vallet, I., Olson, J. W., Lory, S., Lazdunski, A. & Filloux, A. ( 2001; ). The chaperone/usher pathways of Pseudomonas aeruginosa: identification of fimbrial gene clusters (cup) and their involvement in biofilm formation. Proc Natl Acad Sci U S A 98, 6911–6916.[CrossRef]
    [Google Scholar]
  40. van der Velden, A. W., Baumler, A. J., Tsolis, R. M. & Heffron, F. ( 1998; ). Multiple fimbrial adhesins are required for full virulence of Salmonella Typhimurium in mice. Infect Immun 66, 2803–2808.
    [Google Scholar]
  41. Vuopio-Varkila, J. & Schoolnik, G. K. ( 1991; ). Localized adherence by enteropathogenic Escherichia coli is an inducible phenotype associated with the expression of new outer membrane proteins. J Exp Med 174, 1167–1177.[CrossRef]
    [Google Scholar]
  42. Weening, E. H., Barker, J. D., Laarakker, M. C., Humphries, A. D., Tsolis, R. M. & Baumler, A. J. ( 2005; ). The Salmonella enterica serotype Typhimurium lpf, bcf, stb, stc, std, and sth fimbrial operons are required for intestinal persistence in mice. Infect Immun 73, 3358–3366.[CrossRef]
    [Google Scholar]
  43. Wu, K. M., Li, L. H., Yan, J. J., Tsao, N., Liao, T. L., Tsai, H. C., Fung, C. P., Chen, H. J., Liu, Y. M. & other authors ( 2009; ). Genome sequencing and comparative analysis of Klebsiella pneumoniae NTUH-K2044, a strain causing liver abscess and meningitis. J Bacteriol 191, 4492–4501.[CrossRef]
    [Google Scholar]
  44. Yu, W. L., Ko, W. C., Cheng, K. C., Lee, C. C., Lai, C. C. & Chuang, Y. C. ( 2008; ). Comparison of prevalence of virulence factors for Klebsiella pneumoniae liver abscesses between isolates with capsular K1/K2 and non-K1/K2 serotypes. Diagn Microbiol Infect Dis 62, 1–6.[CrossRef]
    [Google Scholar]
  45. Zhao, H., Li, X., Johnson, D. E., Blomfield, I. & Mobley, H. L. ( 1997; ). In vivo phase variation of MR/P fimbrial gene expression in Proteus mirabilis infecting the urinary tract. Mol Microbiol 23, 1009–1019.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.038158-0
Loading
/content/journal/micro/10.1099/mic.0.038158-0
Loading

Data & Media loading...

Oligonucleotide primers used in this study [PDF](40 KB)

PDF

[PDF](15 KB)

PDF

[PDF](350 KB)

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error