1887

Abstract

Early-phase transmission (EPT) is a recently described model of plague transmission that explains the rapid spread of disease from flea to mammal host during an epizootic. Unlike the traditional blockage-dependent model of plague transmission, EPT can occur when a flea takes its first blood meal after initially becoming infected by feeding on a bacteraemic host. Blockage of the flea gut results from biofilm formation in the proventriculus, mediated by the gene products found in the haemin storage () locus of the chromosome. Although biofilms are required for blockage-dependent transmission, the role of biofilms in EPT has yet to be determined. An artificial feeding system was used to feed and rat blood spiked with the parental strain KIM5(pCD1)+, two different biofilm-deficient mutants (Δ, Δ), or a biofilm-overproducer mutant (Δ). Infected fleas were then allowed to feed on naïve Swiss Webster mice for 1–4 days after infection, and the mice were monitored for signs of infection. We also determined the bacterial loads of each flea that fed upon naïve mice. Biofilm-defective mutants transmitted from and as efficiently as the parent strain, whereas the EPT efficiency of fleas fed the biofilm-overproducing strain was significantly less than that of fleas fed either the parent or a biofilm-deficient strain. Fleas infected with a biofilm-deficient strain harboured lower bacterial loads 4 days post-infection than fleas infected with the parent strain. Thus, defects in biofilm formation did not prevent flea-borne transmission of in our EPT model, although biofilm overproduction inhibited efficient EPT. Our results also indicate, however, that biofilms may play a role in infection persistence in the flea.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.037952-0
2010-07-01
2020-01-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/7/2216.html?itemId=/content/journal/micro/10.1099/mic.0.037952-0&mimeType=html&fmt=ahah

References

  1. Abu Khweek, A., Fetherston, J. D. & Perry, R. D. ( 2010; ). Analysis of HmsH and its role in plague biofilm formation. Microbiology 156, 1424–1438.[CrossRef]
    [Google Scholar]
  2. Bacot, A. W. ( 1915; ). Further notes on the mechanism of the transmission of plague by fleas. J Hyg (Lond) 14 (Plague suppl. 4.), 774–776.
    [Google Scholar]
  3. Bacot, A. W. & Martin, C. J. ( 1914; ). Observations on the mechanism of the transmission of plague by fleas. J Hyg (Lond) 13 (Plague suppl. 3), 423–439.
    [Google Scholar]
  4. Bearden, S. W., Fetherston, J. D. & Perry, R. D. ( 1997; ). Genetic organization of the yersiniabactin biosynthetic region and construction of avirulent mutants in Yersinia pestis. Infect Immun 65, 1659–1668.
    [Google Scholar]
  5. Bibikova, V. A. ( 1965; ). Conditions for the existence of the plague microbe in fleas. Cesk Parazitol 12, 41–46.
    [Google Scholar]
  6. Biggerstaff, B. J. ( 2006; ). PooledInfRate, Version 3.0: a Microsoft Excel Add-In to Compute Prevalence Estimates from Pooled Samples. Fort Collins, CO: Centers for Disease Control and Prevention.
  7. Bobrov, A. G., Kirillina, O. & Perry, R. D. ( 2005; ). The phosphodiesterase activity of the HmsP EAL domain is required for negative regulation of biofilm formation in Yersinia pestis. FEMS Microbiol Lett 247, 123–130.[CrossRef]
    [Google Scholar]
  8. Bobrov, A. G., Kirillina, O., Forman, S., Mack, D. & Perry, R. D. ( 2008; ). Insights into Yersinia pestis biofilm development: topology and co-interaction of Hms inner membrane proteins involved in exopolysaccharide production. Environ Microbiol 10, 1419–1432.[CrossRef]
    [Google Scholar]
  9. Brubaker, R. R. ( 1969; ). Mutation rate to nonpigmentation in Pasteurella pestis. J Bacteriol 98, 1404–1406.
    [Google Scholar]
  10. Burroughs, A. L. ( 1944; ). The flea Malareus telchinum a vector of P. pestis. Proc Soc Exp Biol Med 55, 10–11.[CrossRef]
    [Google Scholar]
  11. Burroughs, A. L. ( 1947; ). Sylvatic plague studies: the vector efficiency of nine species of fleas compared with Xenopsylla cheopis. J Hyg (Lond) 45, 371–396.[CrossRef]
    [Google Scholar]
  12. Burrows, T. W. & Bacon, G. A. ( 1958; ). The effects of loss of different virulence determinants on the virulence and immunogenicity of strains of Pasteurella pestis. Br J Exp Pathol 39, 278–291.
    [Google Scholar]
  13. Burrows, T. W. & Jackson, S. ( 1956a; ). The pigmentation of Pasteurella pestis on a defined medium containing haemin. Br J Exp Pathol 37, 570–576.
    [Google Scholar]
  14. Burrows, T. W. & Jackson, S. ( 1956b; ). The virulence-enhancing effect of iron on nonpigmented mutants of virulent strains of Pasteurella pestis. Br J Exp Pathol 37, 577–583.
    [Google Scholar]
  15. Cherepanov, P. P. & Wackernagel, W. ( 1995; ). Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene 158, 9–14.[CrossRef]
    [Google Scholar]
  16. Chu, M. C. ( 2000; ). Laboratory Manual of Plague Diagnostics. Geneva: Centers for Disease Control and Prevention, and World Health Organization.
  17. Darby, C., Hsu, J. W., Ghori, N. & Falkow, S. ( 2002; ). Caenorhabditis elegans: plague bacteria biofilm blocks food intake. Nature 417, 243–244.[CrossRef]
    [Google Scholar]
  18. Datsenko, K. A. & Wanner, B. L. ( 2000; ). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97, 6640–6645.[CrossRef]
    [Google Scholar]
  19. Drancourt, M., Houhamdi, L. & Raoult, D. ( 2006; ). Yersinia pestis as a telluric, human ectoparasite-borne organism. Lancet Infect Dis 6, 234–241.[CrossRef]
    [Google Scholar]
  20. Eisen, R. J. & Gage, K. L. ( 2009; ). Adaptive strategies of Yersinia pestis to persist during inter-epizootic and epizootic periods. Vet Res 40, 1 [CrossRef]
    [Google Scholar]
  21. Eisen, R. J., Bearden, S. W., Wilder, A. P., Montenieri, J. A., Antolin, M. F. & Gage, K. L. ( 2006; ). Early-phase transmission of Yersinia pestis by unblocked fleas as a mechanism explaining rapidly spreading plague epizootics. Proc Natl Acad Sci U S A 103, 15380–15385.[CrossRef]
    [Google Scholar]
  22. Eisen, R. J., Lowell, J. L., Montenieri, J., Bearden, S. W. & Gage, K. L. ( 2007a; ). Temporal dynamics of early-phase transmission of Yersinia pestis by unblocked fleas: secondary infectious feeds prolong efficient transmission by Oropsylla montana (Siphonaptera: Ceratophyllidae). J Med Entomol 44, 672–677.[CrossRef]
    [Google Scholar]
  23. Eisen, R. J., Wilder, A. P., Bearden, S. W., Montenieri, J. & Gage, K. L. ( 2007b; ). Early-phase transmission of Yersinia pestis by unblocked Xenopsylla cheopis (Siphonaptera: Pulicidae) is as efficient as transmission by blocked fleas. J Med Entomol 44, 678–682.[CrossRef]
    [Google Scholar]
  24. Eisen, R. J., Borchert, J. N., Holmes, J. L., Amatre, G., Van Wyk, K., Enscore, R. E., Babi, N., Atiku, L. A., Wilder, A. P. & other authors ( 2008a; ). Early-phase transmission of Yersinia pestis by cat fleas (Ctenocephalides felis) and their potential role as vectors in a plague-endemic region of Uganda. Am J Trop Med Hyg 78, 949–956.
    [Google Scholar]
  25. Eisen, R. J., Holmes, J. L., Schotthoefer, A. M., Vetter, S. M., Montenieri, J. A. & Gage, K. L. ( 2008b; ). Demonstration of early-phase transmission of Yersinia pestis by the mouse flea, Aetheca wagneri (Siphonaptera: Ceratophylidae), and implications for the role of deer mice as enzootic reservoirs. J Med Entomol 45, 1160–1164.[CrossRef]
    [Google Scholar]
  26. Eisen, R. J., Eisen, L. & Gage, K. L. ( 2009; ). Studies of vector competency and efficiency of North American fleas for Yersinia pestis: state of the field and future research needs. J Med Entomol 46, 737–744.[CrossRef]
    [Google Scholar]
  27. Engelthaler, D. M., Hinnebusch, B. J., Rittner, C. M. & Gage, K. L. ( 2000; ). Quantitative competitive PCR as a technique for exploring flea–Yersina pestis dynamics. Am J Trop Med Hyg 62, 552–560.
    [Google Scholar]
  28. Eskey, C. R. & Haas, V. H. ( 1940; ). Plague in the western part of the United States. Public Health Bulletin 254, 1–83.
    [Google Scholar]
  29. Fetherston, J. D., Schuetze, P. & Perry, R. D. ( 1992; ). Loss of the pigmentation phenotype in Yersinia pestis is due to the spontaneous deletion of 102 kb of chromosomal DNA which is flanked by a repetitive element. Mol Microbiol 6, 2693–2704.[CrossRef]
    [Google Scholar]
  30. Fetherston, J. D., Lillard, J. W., Jr & Perry, R. D. ( 1995; ). Analysis of the pesticin receptor from Yersinia pestis: role in iron-deficient growth and possible regulation by its siderophore. J Bacteriol 177, 1824–1833.
    [Google Scholar]
  31. Forman, S., Bobrov, A. G., Kirillina, O., Craig, S. K., Abney, J., Fetherston, J. D. & Perry, R. D. ( 2006; ). Identification of critical amino acid residues in the plague biofilm Hms proteins. Microbiology 152, 3399–3410.[CrossRef]
    [Google Scholar]
  32. Gabitzsch, E. S., Vera-Tudela, R., Eisen, R. J., Bearden, S. W., Gage, K. L. & Zeidner, N. S. ( 2008; ). Development of a real-time quantitative PCR assay to enumerate Yersinia pestis in fleas. Am J Trop Med Hyg 79, 99–101.
    [Google Scholar]
  33. Gage, K. L. & Kosoy, M. Y. ( 2005; ). Natural history of plague: perspectives from more than a century of research. Annu Rev Entomol 50, 505–528.[CrossRef]
    [Google Scholar]
  34. Gong, S., Bearden, S. W., Geoffroy, V. A., Fetherston, J. D. & Perry, R. D. ( 2001; ). Characterization of the Yersinia pestis Yfu ABC inorganic iron transport system. Infect Immun 69, 2829–2837.[CrossRef]
    [Google Scholar]
  35. Hinnebusch, B. J., Perry, R. D. & Schwan, T. G. ( 1996; ). Role of the Yersinia pestis hemin storage (hms) locus in the transmission of plague by fleas. Science 273, 367–370.[CrossRef]
    [Google Scholar]
  36. Itoh, Y., Wang, X., Hinnebusch, B. J., Preston, J. F., III & Romeo, T. ( 2005; ). Depolymerization of β-1,6-N-acetyl-d-glucosamine disrupts the integrity of diverse bacterial biofilms. J Bacteriol 187, 382–387.[CrossRef]
    [Google Scholar]
  37. Jackson, S. & Burrows, T. W. ( 1956; ). The pigmentation of Pasteurella pestis on a defined medium containing haemin. Br J Exp Pathol 37, 570–576.
    [Google Scholar]
  38. Jarrett, C. O., Deak, E., Isherwood, K. E., Oyston, P. C., Fischer, E. R., Whitney, A. R., Kobayashi, S. D., DeLeo, F. R. & Hinnebusch, B. J. ( 2004; ). Transmission of Yersinia pestis from an infectious biofilm in the flea vector. J Infect Dis 190, 783–792.[CrossRef]
    [Google Scholar]
  39. Jones, H. A., Lillard, J. W., Jr & Perry, R. D. ( 1999; ). HmsT, a protein essential for expression of the haemin storage (Hms+) phenotype of Yersinia pestis. Microbiology 145, 2117–2128.[CrossRef]
    [Google Scholar]
  40. Kirillina, O., Fetherston, J. D., Bobrov, A. G., Abney, J. & Perry, R. D. ( 2004; ). HmsP, a putative phosphodiesterase, and HmsT, a putative diguanylate cyclase, control Hms-dependent biofilm formation in Yersinia pestis. Mol Microbiol 54, 75–88.[CrossRef]
    [Google Scholar]
  41. Konnov, N. P., Anisimov, P. I., Kondrashkina, K. I., Sinichkina, A. A., Luk'ianova, A. D. & Demchenko, T. A. ( 1979; ). The proventriculus of the Xenopsylla cheopis flea studied by scanning electron microscopy. Parazitologiia 13, 26–28.
    [Google Scholar]
  42. Korzun, V. M. & Nikitin, A. ( 1997; ). Asymmetry of the chaetae in fleas (Citellophilus tesquorum) as a possible marker of their capacity for blocking. Med Parazitol (Mosk) 1, 34–36 (in Russian).
    [Google Scholar]
  43. Kutyrev, V. V., Filippov, A. A., Oparina, O. S. & Protsenko, O. A. ( 1992; ). Analysis of Yersinia pestis chromosomal determinants Pgm+ and Psts associated with virulence. Microb Pathog 12, 177–186.[CrossRef]
    [Google Scholar]
  44. Lillard, J. W., Jr, Bearden, S. W., Fetherston, J. D. & Perry, R. D. ( 1999; ). The haemin storage (Hms+) phenotype of Yersinia pestis is not essential for the pathogenesis of bubonic plague in mammals. Microbiology 145, 197–209.[CrossRef]
    [Google Scholar]
  45. Perry, R. D. & Bearden, S. W. ( 2008; ). Isolation and confirmation of Yersinia pestis mutants exempt from select agent regulations. Curr Protoc Microbiol 11, 5B.2.1–5B.2.12.
    [Google Scholar]
  46. Perry, R. D. & Fetherston, J. D. ( 1997; ). Yersinia pestis – etiologic agent of plague. Clin Microbiol Rev 10, 35–66.
    [Google Scholar]
  47. Perry, R. D., Pendrak, M. L. & Schuetze, P. ( 1990; ). Identification and cloning of a hemin storage locus involved in the pigmentation phenotype of Yersinia pestis. J Bacteriol 172, 5929–5937.
    [Google Scholar]
  48. Perry, R. D., Bobrov, A. G., Kirillina, O., Jones, H. A., Pedersen, L., Abney, J. & Fetherston, J. D. ( 2004; ). Temperature regulation of the hemin storage (Hms+) phenotype of Yersinia pestis is posttranscriptional. J Bacteriol 186, 1638–1647.[CrossRef]
    [Google Scholar]
  49. Pollitzer, R. ( 1954; ). Plague. In World Health Organization Monograph Series, no. 22. Geneva: World Health Organization.
  50. Rose, L. J., Donlan, R., Banerjee, S. N. & Arduino, M. J. ( 2003; ). Survival of Yersinia pestis on environmental surfaces. Appl Environ Microbiol 69, 2166–2171.[CrossRef]
    [Google Scholar]
  51. Simm, R., Fetherston, J. D., Kader, A., Romling, U. & Perry, R. D. ( 2005; ). Phenotypic convergence mediated by GGDEF-domain-containing proteins. J Bacteriol 187, 6816–6823.[CrossRef]
    [Google Scholar]
  52. Surgalla, M. J. & Beesley, E. D. ( 1969; ). Congo red-agar plating medium for detecting pigmentation in Pasteurella pestis. Appl Microbiol 18, 834–837.
    [Google Scholar]
  53. Udovikov, A. I., Grigor'eva, G. V., Tolokonnikova, S. I., Iakovlev, S. A., Tarasov, M. A. & Sludskii, A. A. ( 2009; ). Role of burrow microbiocenosis in plague enzootia. Med Parazitol (Mosk) 2, 44–46.
    [Google Scholar]
  54. Une, T. & Brubaker, R. R. ( 1984; ). Roles of V antigen in promoting virulence and immunity in yersiniae. J Immunol 133, 2226–2230.
    [Google Scholar]
  55. Wilder, A. P., Eisen, R. J., Bearden, S. W., Montenieri, J. A., Gage, K. L. & Antolin, M. F. ( 2008a; ). Oropsylla hirsuta (Siphonaptera: Ceratophyllidae) can support plague epizootics in black-tailed prairie dogs (Cynomys ludovicianus) by early-phase transmission of Yersinia pestis. Vector Borne Zoonotic Dis 8, 359–367.[CrossRef]
    [Google Scholar]
  56. Wilder, A. P., Eisen, R. J., Bearden, S. W., Montenieri, J. A., Tripp, D. W., Brinkerhoff, R. J., Gage, K. L. & Antolin, M. F. ( 2008b; ). Transmission efficiency of two flea species (Oropsylla tuberculata cynomuris and Oropsylla hirsuta) involved in plague epizootics among prairie dogs. EcoHealth 5, 205–212.[CrossRef]
    [Google Scholar]
  57. Wood, J. W., Ferrell, R. J. & Dewitte-Avina, S. N. ( 2003; ). The temporal dynamics of the fourteenth-century Black Death: new evidence from English ecclesiastical records. Hum Biol 75, 427–448.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.037952-0
Loading
/content/journal/micro/10.1099/mic.0.037952-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error